【題目】已知定義域為R的函數(shù)f(x)= 是奇函數(shù),
(1)求實數(shù)a的值;
(2)若對任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0恒成立,求實數(shù)k的取值范圍;
(3)設關于x的方程f(4x﹣b)+f(﹣2x+1)=0有實數(shù)根,求實數(shù)b的取值范圍.
【答案】
(1)解:∵函數(shù)f(x)= 是奇函數(shù),
∴f(﹣x)= = =﹣f(x)=﹣ ,
∴a=1
(2)解:由(1)可知f(x)= =﹣1+
由上式易知f(x)在(﹣∞,+∞)上為減函數(shù),
又∵f(x)是奇函數(shù),
從而不等式f(t2﹣2t)+f(2t2﹣k)<0等價于f(t2﹣2t)<﹣f(2t2﹣k)=f(﹣2t2+k),
∵f(x)是減函數(shù),由上式推得t2﹣2t>﹣2t2+k,
即對一切t∈R有3t2﹣2t﹣k>0,
從而判別式△=4+12k<0,解得k<﹣
(3)解:∵f(x)是奇函數(shù),
∴f(4x﹣b)+f(﹣2x+1)=0,
∴f(4x﹣b)=f(2x+1),
∴4x﹣b=2x+1,
∴b=4x﹣2x+1,
∵4x﹣2x+1=(2x)2﹣2×2x=(2x﹣1)2﹣1≥﹣1,
∴當b∈[﹣1,+∞)時方程有實數(shù)解
【解析】(1)根據(jù)奇函數(shù)的定義即可求出,(2)根據(jù)奇函數(shù)的定義將不等式化為:f(t2﹣2t)<f(﹣2t2+k),再分離函數(shù)解析式,利用指數(shù)函數(shù)的復合函數(shù)的單調性判斷出此函數(shù)的單調性,再列出關于x的不等式,由題意轉化為:3t2﹣2t﹣k>0恒成立,利用二次函數(shù)的性質列出等價不等式求解.(3)先將原方程變?yōu)閎=4x﹣2x+1 , 再利用整體思想將2x看成整體,結合二次函數(shù)的性質即可求得實數(shù)b的取值范圍
科目:高中數(shù)學 來源: 題型:
【題目】已知全集U=R,A={x|x≥3},B={x|x2﹣8x+7≤0},C={x|x≥a﹣1}
(1)求A∩B,A∪B;
(2)若A∩C=C,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
已知函數(shù)f(x)=2x3-3(a+1)x2+6ax,a∈R.
(Ⅰ)曲線y=f(x)在x=0處的切線的斜率為3,求a的值;
(Ⅱ)若對于任意x∈(0,+∞),f(x)+f(-x)≥12lnx恒成立,求a的取值范圍;
(Ⅲ)若a>1,設函數(shù)f(x)在區(qū)間[1,2]上的最大值、最小值分別為M(a)、m(a),
記h(a)=M(a)-m(a),求h(a)的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設△ABC的內角A,B,C的對邊分別為a,b,c.已知 = .
(1)求角A的大。
(2)當a=6時,求△ABC面積的最大值,并指出面積最大時△ABC的形狀.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2+ax﹣lnx,a∈R
(1)若函數(shù)f(x)在[1,2]上是減函數(shù),求實數(shù)a的取值范圍
(2)令g(x)=f(x)﹣x2 , 是否存在實數(shù)a,當x∈(0,e]時,函數(shù)g(x)的最小值是3?若存在,求出a的值,若不存在,說明理由
(3)當x∈(0,e]時,求證:e2x2﹣ x>(x+1)lnx.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中秋節(jié)即將到來,為了做好中秋節(jié)商場促銷活動,某商場打算將進行促銷活動的禮品盒重新設計.方案如下:將一塊邊長為10的正方形紙片剪去四個全等的等腰三角形, , , 再將剩下的陰影部分折成一個四棱錐形狀的包裝盒,其中重合于點, 與重合, 與重合, 與重合, 與重合(如圖所示).
(1)求證:平面平面;
(2)已知,過作交于點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)在定義域(0,+∞)上是單調函數(shù),若對任意x∈(0,+∞),都有 ,則 的值是( )
A.5
B.6
C.7
D.8
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某石化集團獲得了某地深海油田區(qū)塊的開采權,集團在該地區(qū)隨機初步勘探了部分幾口井,取得了地質資料.進入全面勘探時期后,集團按網絡點來布置井位進行全面勘探,由于勘探一口井的費用很高,如果新設計的井位與原有井位重合或接近,便利用舊井的地質資料,不必打這口新井,以節(jié)約勘探費用,勘探初期數(shù)據(jù)資料見如表:
(參考公式和計算結果:
, , , )
(1)1~6號舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為,求的值,并估計的預報值.
(2)現(xiàn)準備勘探新井,若通過1,3,5,7號并計算出的, 的值(, 精確到0.01)相比于(1)中的, ,值之差不超過10%,則使用位置最接近的已有舊井,否則在新位置打開,請判斷可否使用舊井?
(3)設出油量與勘探深度的比值不低于20的勘探井稱為優(yōu)質井,那么在原有6口井中任意勘探4口井,求勘探優(yōu)質井數(shù)的分布列與數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)= x2﹣mlnx,g(x)=x2﹣(m+1)x,m>0.
(1)求函數(shù)f(x)的單調區(qū)間;
(2)當m≥1時,討論函數(shù)f(x)與g(x)圖象的交點個數(shù).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com