【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若,試判斷的零點(diǎn)個(gè)數(shù).

【答案】(1)當(dāng)時(shí),上是增函數(shù),

當(dāng),上是增函數(shù),在上是減函數(shù),在上是增函數(shù),

當(dāng)時(shí),上是增函數(shù),在上是減函數(shù),在上是增函數(shù);

(2)1

【解析】

1)對(duì)求導(dǎo)后對(duì)進(jìn)行分類討論,找到的區(qū)間,即為的單調(diào)區(qū)間.

2)由(1)可知時(shí),有極大值和極小值,研究他們的正負(fù),并且找到令的點(diǎn),根據(jù)零點(diǎn)存在定理,找出零點(diǎn)個(gè)數(shù).

(1)函數(shù)的定義域?yàn)?/span>,,令,則,,

(i)若,則恒成立,所以上是增函數(shù),

(ii)若,則,

當(dāng)時(shí),,是增函數(shù),

當(dāng)時(shí),,是減函數(shù),

當(dāng)時(shí),,是增函數(shù),

(iii)若,則,

當(dāng)時(shí),是增函數(shù),

當(dāng)時(shí),是減函數(shù),

當(dāng)時(shí),是增函數(shù),

綜上所述:當(dāng)時(shí),上是增函數(shù),

當(dāng)上是增函數(shù),在上是減函數(shù),在上是增函數(shù),

當(dāng)時(shí),上是增函數(shù),在上是減函數(shù),在上是增函數(shù);

(2)當(dāng)時(shí),

上是增函數(shù),在上是減函數(shù),在上是增函數(shù),

所以的極小值為

的極大值為,

設(shè),其中

,

所以上是增函數(shù),

所以

因?yàn)?/span>,

所以有且僅有1個(gè),使.

所以當(dāng)時(shí),有且僅有1個(gè)零點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國南北朝時(shí)期的數(shù)學(xué)家祖暅提出了計(jì)算體積的祖暅原理:“冪勢(shì)既同,則積不容異!币馑际牵簝蓚(gè)等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個(gè)幾何體的體積相等.已知曲線,直線為曲線在點(diǎn)處的切線.如圖所示,陰影部分為曲線、直線以及軸所圍成的平面圖形,記該平面圖形繞軸旋轉(zhuǎn)一周所得的幾何體為.給出以下四個(gè)幾何體:

圖①是底面直徑和高均為的圓錐;

圖②是將底面直徑和高均為的圓柱挖掉一個(gè)與圓柱同底等高的倒置圓錐得到的幾何體;

圖③是底面邊長和高均為的正四棱錐;

圖④是將上底面直徑為,下底面直徑為,高為的圓臺(tái)挖掉一個(gè)底面直徑為,高為的倒置圓錐得到的幾何體.

根據(jù)祖暅原理,以上四個(gè)幾何體中與的體積相等的是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)的高二(1)班男同學(xué)名,女同學(xué)名,老師按照分層抽樣的方法組建了一個(gè)人的課外興趣小組.

1)求某同學(xué)被抽到的概率及課外興趣小組中男、女同學(xué)的人數(shù);

2)經(jīng)過一個(gè)月的學(xué)習(xí)、討論,這個(gè)興趣小組決定選出兩名同學(xué)做某項(xiàng)實(shí)驗(yàn),方法是先從小組里選出名同學(xué)做實(shí)驗(yàn),該同學(xué)做完后,再從小組內(nèi)剩下的同學(xué)中選名同學(xué)做實(shí)驗(yàn),求選出的兩名同學(xué)中恰有名女同學(xué)的概率;

3)實(shí)驗(yàn)結(jié)束后,第一次做實(shí)驗(yàn)的同學(xué)得到的實(shí)驗(yàn)數(shù)據(jù)為,第二次做實(shí)驗(yàn)的同學(xué)得到的實(shí)驗(yàn)數(shù)據(jù)為,請(qǐng)問哪位同學(xué)的實(shí)驗(yàn)更穩(wěn)定?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題正確的有________(填序號(hào))

①已知,則pq的充分不必要條件;

函數(shù)的最小正周期為的必要不充分條件;

中,內(nèi)角A,BC所對(duì)的邊分別為a,b,c,,則為等腰三角形的必要不充分條件;

④若命題函數(shù)的值域?yàn)?/span>為真命題,則實(shí)數(shù)a的取值范圍是.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國南北朝時(shí)期的數(shù)學(xué)家祖暅提出了計(jì)算體積的祖暅原理:“冪勢(shì)既同,則積不容異!币馑际牵簝蓚(gè)等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個(gè)幾何體的體積相等.已知曲線,直線為曲線在點(diǎn)處的切線.如圖所示,陰影部分為曲線、直線以及軸所圍成的平面圖形,記該平面圖形繞軸旋轉(zhuǎn)一周所得的幾何體為.給出以下四個(gè)幾何體:

圖①是底面直徑和高均為的圓錐;

圖②是將底面直徑和高均為的圓柱挖掉一個(gè)與圓柱同底等高的倒置圓錐得到的幾何體;

圖③是底面邊長和高均為的正四棱錐;

圖④是將上底面直徑為,下底面直徑為,高為的圓臺(tái)挖掉一個(gè)底面直徑為,高為的倒置圓錐得到的幾何體.

根據(jù)祖暅原理,以上四個(gè)幾何體中與的體積相等的是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的多面體是由一個(gè)直平行六面體被平面所截后得到的,其中,,.

1)求證:平面平面;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐中,,G的重心,過點(diǎn)G作三棱錐的一個(gè)截面,使截面平行于直線PBAC,則截面的周長為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:關(guān)于x的方程xa在(1,+∞)上有實(shí)根;命題q:方程1表示的曲線是焦點(diǎn)在x軸上的橢圓.

1)若p是真命題,求a的取值范圍;

2)若pq是真命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)分別為,,為橢圓上不與左右頂點(diǎn)重合的任意一點(diǎn),,分別為的內(nèi)心、重心,當(dāng)軸時(shí),橢圓的離心率為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案