【題目】如圖,在直二面角D﹣AB﹣E中,四邊形ABCD是邊長為2的正方形,AE=EB,點(diǎn)F在CE上,且BF⊥平面ACE;
(1)求證:AE⊥平面BCE;
(2)求二面角B﹣AC﹣E的正弦值;
(3)求點(diǎn)D到平面ACE的距離.

【答案】
(1)證明:∵BF⊥平面ACE,∴BF⊥AE,

∵二面角D﹣AB﹣E為直二面角,

∴平面ABCD⊥平面ABE,

又BC⊥AB,∴BC⊥平面ABE,則BC⊥AE,

又BF平面BCE,BF∩BC=B,

∴AE⊥平面BCE


(2)法一、解:連接AC、BD交于G,連接FG,

∵ABCD為正方形,∴BD⊥AC,

∵BF⊥平面ACE,BG⊥AC,∴AC⊥平面BFG,

∴FG⊥AC,即∠FGB為二面角B﹣AC﹣E的平面角,

由(1)可知,AE⊥平面BCE,∴AE⊥EB,

又AE=EB,AB=2,AE=BE= ,

在直角三角形BCE中,CE= = ,BF= = ,

在正方形中,BG= ,在直角三角形BFG中,sin∠FGB= ;

法二、以線段AB的中點(diǎn)為原點(diǎn)O,OE所在直線為x軸,AB所在直線為y軸,

過O點(diǎn)平行于AD的直線為z軸,建立空間直角坐標(biāo)系O﹣xyz,如圖.

∵AE⊥面BCE,BE面BCE,∴AE⊥BE,

在Rt△AEB中,AB=2,O為AB的中點(diǎn),

∴OE=1.∴A(0,﹣1,0),E(1,0,0),C(0,1,2),

=(1,1,0), =(0,2,2).

設(shè)平面AEC的一個法向量為 =(x,y,z),

,令x=1,得 =(1,﹣1,1)是平面AEC的一個法向量.

又平面BAC的一個法向量為 =(1,0,0),

∴cos< >= =

∴二面角B﹣AC﹣E的正弦值為


(3)法一、由(2)可知,在正方形ABCD中,BG=DG,D到平面ACE的距離等于B到平面ACE的距離,

BF⊥平面ACE,線段BF的長度就是點(diǎn)B到平面ACE的距離,即為D到平面ACE的距離所以D到平面的距離為

法二、

解:∵AD∥z軸,AD=2,∴ =(0,0,2),

∴點(diǎn)D到平面ACE的距離d=| ||cos< >= =


【解析】(1)要證AE⊥平面BCE,只需證明AE垂直平面BCE內(nèi)的兩條相交直線BF、BC即可;(2)連接AC、BD交于G,連接FG,說明∠FGB為二面角B﹣AC﹣E的平面角,然后求二面角B﹣AC﹣E的大小;(3)利用VDACE=VEACD , 求點(diǎn)D到平面ACE的距離,也可以利用空間直角坐標(biāo)系,向量的數(shù)量積,證明垂直,求出向量的模.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3﹣3x.
(1)求曲線y=f(x)在點(diǎn)x=2處的切線方程;
(2)若過點(diǎn)A(1,m)(m≠﹣2)可作曲線y=f(x)的三條切線,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)同時擲兩顆骰子,得到點(diǎn)數(shù)分別為a,b,則橢圓 =1(a>b>0)的離心率e> 的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=log2(ax2+4x+5).
(1)若f(1)<3,求a的取值范圍;
(2)若a=1,求函數(shù)f(x)的值域.
(3)若f(x)的值域?yàn)镽,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(2x+φ),其中φ為實(shí)數(shù),若f(x)≤|f( )|對x∈R恒成立,且f( )>f(π),則f(x)的單調(diào)遞增區(qū)間是(
A.[kπ﹣ ,kπ+ ](k∈Z)
B.[kπ,kπ+ ](k∈Z)
C.[kπ+ ,kπ+ ](k∈Z)
D.[kπ﹣ ,kπ](k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在其定義域內(nèi)有兩個不同的極值點(diǎn).

(1)求的取值范圍.

(2)設(shè)的兩個極值點(diǎn)為,證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示,則關(guān)于函數(shù)y=f(x),下列說法正確的是(
A.在x=﹣1處取得極大值
B.在區(qū)間[﹣1,4]上是增函數(shù)
C.在x=1處取得極大值
D.在區(qū)間[1,+∞)上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2+bx+c在x=﹣ 與x=1時都取得極值.
(1)求a、b的值與函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對x∈[﹣1,2],不等式f(x)<c2恒成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(Ⅰ)求曲線在點(diǎn)處的切線方程;

(Ⅱ)求證: ;

(Ⅲ)判斷曲線是否位于軸下方,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案