設(-∞,a)是函數(shù)y=x2-4|x|+5的一個減區(qū)間,則實數(shù)a的取值為(  )
分析:根據(jù)絕對值的定義可得y=x2-4|x|+5=
x2-4x+5 x≥0
x2+4x+5 x<0
然后利用一元二次函數(shù)的單調性可得出此函數(shù)的單調區(qū)間然后利用(-∞,a)是函數(shù)y=x2-4|x|+5的一個減區(qū)間即可求出a的取值范圍.
解答:解:∵y=x2-4|x|+5=
x2-4x+5 x≥0
x2+4x+5 x<0

∴y=x2-4|x|+5在(-∞,-2]單調遞減,(-2,0)單調遞增,[0,2)單調遞減,[2,+∞)單調遞增.
∵(-∞,a)是函數(shù)y=x2-4|x|+5的一個減區(qū)間
∴a≤-2
故選B
點評:本題主要考查了一元二次函數(shù)的單調性.解題的關鍵是要利用絕對值的定義得出y=
x2-4x+5 x≥0
x2+4x+5 x<0
然后再根據(jù)一元二次函數(shù)的單調性解題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設α∈R,則“a=1”是“f(x)=lg(a+
2
x-1
)為奇函數(shù)”的( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列說法中,正確的是( 。
①對于定義域為R的函數(shù)f(x),若函數(shù)f(x)滿足f(x+1)=f(1-x),則函數(shù)f(x)的圖象關于x=1對稱;
②當a>1時,任取x∈R都有ax>a-x
③“a=1”是“函數(shù)f(x)=lg(ax+1)在(0,+∞)上單調遞增”的充分必要條件;
④設a∈{-1,1,
1
2
,3},則使函數(shù)y=xa的定義域為R且該函數(shù)為奇函數(shù)的所有a的值為1,3;
⑤已知a是函數(shù)f(x)=2x-log0.5x的零點,若0<x0<a,則f(x0)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•東城區(qū)二模)設f-1(x)是函數(shù)f(x)=log3(x+6)的反函數(shù),若[f-1(a)+6][f-1(b)+6]=27,則f(a+b)的值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•梅州一模)設函數(shù)f(x)=sin2x+
3
sinxcosx+
3
2

(1)求f(x)的最小正周期T;
(2)已知a,b,c分別是△ABC的內角A,B,C所對的邊,a=2
3
,c=4,A為銳角,且f(A)是函數(shù)f(x)在[0,
π
2
]上的最大值,求A、b.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a∈R,則“a=1”是“函數(shù)y=sinax•cosax的最小正周期為π”的( 。

查看答案和解析>>

同步練習冊答案