對定義在上,并且同時滿足以下兩個條件的函數(shù)稱為H函數(shù).
① 對任意的,總有;
② 當(dāng)時,總有成立.
已知函數(shù)與是定義在上的函數(shù).
(1)試問函數(shù)是否為H函數(shù)?并說明理由;
(2)若函數(shù)是H函數(shù),求實(shí)數(shù)a的值;
(3)在(2)的條件下,若方程有解,求實(shí)數(shù)m的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)是定義在(0,+∞)上的單調(diào)增函數(shù),滿足f(xy)=f(x)+f(y),f(3)=1
(1)求f(1)的值
(2)若滿足f(x) +f(x-8)≤2 求x的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b0/6/wbrq62.png" style="vertical-align:middle;" />的單調(diào)函數(shù)且圖關(guān)于點(diǎn)對稱,當(dāng)時,.
(1)求的解析式;
(2)若對任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)有如下性質(zhì):如果常數(shù),那么該函數(shù)在上是減函數(shù),在 上是增函數(shù).
(1)如果函數(shù)在上是減函數(shù),在上是增函數(shù),求的值;
(2)證明:函數(shù)(常數(shù))在上是減函數(shù);
(3)設(shè)常數(shù),求函數(shù)的最小值和最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)
已知函數(shù)(為常數(shù),且)的圖象過點(diǎn).
(1)求實(shí)數(shù)的值;
(2)若函數(shù),試判斷函數(shù)的奇偶性,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)已知是定義在上的奇函數(shù),當(dāng)時,
(1)求的解析式;
(2)是否存在負(fù)實(shí)數(shù),使得當(dāng)的最小值是4?如果存在,求出的值;如果不存在,請說明理由.
(3)對如果函數(shù)的圖像在函數(shù)的圖像的下方,則稱函數(shù)在D上被函數(shù)覆蓋.求證:若時,函數(shù)在區(qū)間上被函數(shù)覆蓋.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分) 已知函數(shù)f(x)=loga(1+x),g(x)=loga(1-x),其中(a>0且a≠1),設(shè)h(x)=f(x)-g(x).
(1)求函數(shù)h(x)的定義域;
(2)判斷h(x)的奇偶性,并說明理由;
(3)若f(3)=2,求使h(x)>0成立的x的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)為偶函數(shù),集合A=為單元素集合
(I)求的解析式
(II)設(shè)函數(shù),若函數(shù)在上單調(diào),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com