【題目】在直角梯形ABCD中,AD∥BC,∠A=90°,AB=2AD,若將△ABD沿直線BD折成△A′BD,使得A′D⊥BC,則直線A′B與平面BCD所成角的正弦值是 .
【答案】
【解析】解:過D作DE⊥BC于E,連結A′E,過A′作A′O⊥DE,連結A′O.
∵BC⊥A′D,BC⊥DE,A′D∩A′O=A′,
∴BC⊥平面A′DE,∵A′O平面A′DE,
∴BC⊥A′O,又A′O⊥DE,BC∩DE=E,
∴A′O⊥平面BCD.
∴∠A′BO為直線A′B與平面BCD所成的角.
在直角梯形ABCD中,過A作AO⊥BD,交BD于M,交DE于O,
設AD=1,則AB=2,∴BD= ,
∴AM= = ,∴DM= = .
由△AMD∽△DMO得 ,即 ,∴DO= .
∴A′O= = .
∴sin∠A′BO= = .
所以答案是 .
【考點精析】認真審題,首先需要了解空間角的異面直線所成的角(已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則).
科目:高中數(shù)學 來源: 題型:
【題目】為了調(diào)查每天微信用戶使用微信的時間,某經(jīng)銷化妝品分微商在一廣場隨機采訪男性、女性用戶各50名,其中每天玩微信超過6小時的用戶列為“微信控”,否則稱其為“非微信控”,調(diào)查結果如下:
微信控 | 非微信控 | 合計 | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合計 | 56 | 44 | 100 |
(1)根據(jù)以上數(shù)據(jù),能否有60%的把握認為“微信控”與“性別”有關?
(2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人贈送營養(yǎng)面膜各1份,再從抽取的這5人中再隨機抽取3人贈送200元的護膚品套裝,記這3人中“微信控”的人數(shù)為X,試求X的分布列和數(shù)學期望.
參考公式:K2= ,其中n=a+b+c+d
參考數(shù)據(jù):
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 |
k0 | 0.455 | 0.708 | 1.321 | 3.840 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在三棱錐中, , 為的中點, 平面,垂足落在線段上,已知.
(1)證明: ;
(2)在線段上是否存在一點,使得二面角為直二面角?若存在,求出的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,離心率為,過點的直線與橢圓相交于兩點,且的周長為8.
(1)求橢圓的方程;
(2)若經(jīng)過原點的直線與橢圓相交于兩點,且,試判斷是否為定值?若為定值,試求出該定值;否則,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),為偶函數(shù),且當時,.記.給出下列關于函數(shù)的說法:①當時,;②函數(shù)為奇函數(shù);③函數(shù)在上為增函數(shù);④函數(shù)的最小值為,無最大值. 其中正確的是________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), .
()若,求曲線在點處的切線方程.
()若,求函數(shù)的單調(diào)區(qū)間.
()若,且在區(qū)間上恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題;命題函數(shù)在區(qū)間上為減函數(shù).
(1)若命題為假命題,求實數(shù)的取值范圍;
(2)若命題“”為真命題,“”為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲乙兩人同時生產(chǎn)內(nèi)徑為的一種零件,為了對兩人的生產(chǎn)質量進行評比,從他們生產(chǎn)的零件中各抽出 5 件(單位: ) ,
甲:25.44,25.43, 25.41,25.39,25.38
乙:25.41,25.42, 25.41,25.39,25.42.
從生產(chǎn)的零件內(nèi)徑的尺寸看、誰生產(chǎn)的零件質量較高.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面為矩形,平面平面, , , , 為中點.
(Ⅰ)求證: 平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在棱上是否存在點,使得?若存在,求的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com