精英家教網 > 高中數學 > 題目詳情

【題目】2022年,將在北京和張家口兩個城市舉辦第24屆冬奧會.某中學為了普及奧運會知識和提高學生參加體育運動的積極性,舉行了一次奧運知識競賽.隨機抽取了30名學生的成績,繪成如圖所示的莖葉圖,若規(guī)定成績在75分以上(包括75)的學生定義為甲組,成績在75分以下(不包括75)定義為乙組.

(1)在這30名學生中,甲組學生中有男生7人,乙組學生中有女生12人,試問有沒有90%的把握認為成績分在甲組或乙組與性別有關;

(2)①如果用分層抽樣的方法從甲組和乙組中抽取5人,再從這5人中隨機抽取2人,那么至少有1人在甲組的概率是多少?

②用樣本估計總體,把頻率作為概率,若從該地區(qū)所有的中學(人數很多)中隨機選取3人,用表示所選3人中甲組的人數,試寫出的分布列,并求出的數學期望.

附: ;其中

獨立性檢驗臨界表:

0.100

0.050

0.010

k

2.706

3.841

6.635

【答案】(1)沒有90%的把握(2)

【解析】

(1)作出列聯表由列聯表數據代入公式求出,從而得到沒有的把握認為成績分在甲組或乙組與性別有關;(2)①用表示至少有1人在甲組,利用對立事件概率計算公式能求出至少有1人在甲組的概率;②由題意知,由此能求出的分布列,利用二項分布的期望公式可得數學期望.

(1)作出列聯表:

甲組

乙組

合計

男生

7

6

13

女生

5

12

17

合計

12

18

30

由列聯表數據代入公式得

故沒有90%的把握認為成績分在甲組或乙組與性別有關.

(2) ①用A表示至少有1人在甲組,則

②由題知,抽取的30名學生中有12名學生是甲組學生,抽取1名學生是甲組學生的頻率為

那么從所有的中學生中抽取1名學生是甲組學生的概率是,

又因為所取總體數量較多,抽取3名學生可以看出3次獨立重復實驗,

的取值為0,1,2,3.

于是服從二項分布,即

所以的數學期望為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某玩具所需成本費用為PP=1 000+5xx2,而每套售出的價格為Q其中Q(x)=a (a,bR),

(1)問:玩具廠生產多少套時,使得每套所需成本費用最少?

(2)若生產出的玩具能全部售出,且當產量為150套時利潤最大此時每套價格為30a,b的值.(利潤=銷售收入-成本).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列說法

①在殘差圖中,殘差點比較均勻地落在水平的帶狀區(qū)域內,說明選用的模型比較合適;②用相關指數可以刻畫回歸的效果,值越小說明模型的擬合效果越好;③比較兩個模型的擬合效果,可以比較殘差平方和大小,殘差平方和越小的模型擬合效果越好.其中說法正確的是(  )

A. ①② B. ②③ C. ①③ D. ①②③

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知曲線C的極坐標方程是ρ=1,以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數方程為 為參數).
(1)寫出直線l與曲線C的直角坐標方程;
(2)設曲線C經過伸縮變換 得到曲線C′,設曲線C′上任一點為M(x,y),求 的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列說法錯誤的是(
A.設p:f(x)=x3+2x2+mx+1是R上的單調增函數, ,則p是q的必要不充分條件
B.若命題 ,則¬p:?x∈R,x2﹣x+1>0
C.奇函數f(x)定義域為R,且f(x﹣1)=﹣f(x),那么f(8)=0
D.命題“若x2+y2=0,則x=y=0”的逆否命題為“若x,y中至少有一個不為0,則x2+y2≠0”

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某商場為了了解顧客的購物信息,隨機在商場收集了位顧客購物的相關數據如下表:

一次購物款(單位:元)

顧客人數

統計結果顯示位顧客中購物款不低于元的顧客占,該商場每日大約有名顧客,為了增加商場銷售額度,對一次購物不低于元的顧客發(fā)放紀念品.

(Ⅰ)試確定 的值,并估計每日應準備紀念品的數量;

(Ⅱ)現有人前去該商場購物,求獲得紀念品的數量的分布列與數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

已知過點的直線的參數方程是為參數).以平面直角坐標系的原點為極點, 軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程式為.

)求直線的普通方程和曲線的直角坐標方程;

)若直線與曲線交于兩點,且,求實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】各棱長都等于4的四面ABCD中,設G為BC的中點,E為△ACD內的動點(含邊界),且GE∥平面ABD,若 =1,則| |=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為提高信息在傳輸中的抗干擾能力,通常在原信息中按一定規(guī)則加入相關數據組成傳輸信息.設定原信息為 ),傳輸信息為,其中,運算規(guī)則為:,,例如原信息為111,則傳輸信息為01111.傳輸信息在傳輸過程中受到干擾可能導致接收信息出錯,則下列接收信息一定有誤的是( )

A. 11010 B. 01100 C. 10111 D. 00011

查看答案和解析>>

同步練習冊答案