【題目】已知函數,.
(Ⅰ)若曲線與曲線在公共點處有共同的切線,求實數的值;
(Ⅱ)在(Ⅰ)的條件下,試問函數是否有零點?如果有,求出該零點;若沒有,請說明理由.
【答案】(I);(II)無零點.
【解析】試題分析:(Ⅰ)設曲線與曲線公共點為則由,,即可求的值;
(Ⅱ)函數是否有零點,轉化為函數與函數在區(qū)間是否有交點,求導根據函數單調性可知最小值為,最大值為,從而無零點
試題解析:
(Ⅰ)函數的定義域為,,
設曲線與曲線公共點為
由于在公共點處有共同的切線,所以,解得,.
由可得.
聯立解得.
(Ⅱ)函數是否有零點,
轉化為函數與函數在區(qū)間是否有交點,
,可得,
令,解得,此時函數單調遞增;
令,解得,此時函數單調遞減.
∴當時,函數取得極小值即最小值,.
可得,
令,解得,此時函數單調遞增;
令,解得,此時函數單調遞減.
∴當時,函數取得極大值即最大值,.
因此兩個函數無交點.即函數無零點.
科目:高中數學 來源: 題型:
【題目】【2018四川南充市高三第二次(3月)高考適應性考試】已知橢圓的離心率為,點在橢圓上.
(I)求橢圓的方程;
(II)直線平行于為坐標原點),且與橢圓交于兩個不同的點,若為鈍角,求直線在軸上的截距的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線的參數方程為(其中為參數),曲線.以原點為極點,軸的正半軸為極軸建立極坐標系.
(1)求曲線、的極坐標方程;
(2)射線與曲線、分別交于點(且均異于原點)當時,求的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線的參數方程為(為參數).以平面直角坐標系的原點為極點, 軸的正半軸為極軸,取相同的單位長度建立極坐標系,設直線的極坐標方程為.
(1)求曲線和直線的普通方程;
(2)設為曲線上任意一點,求點到直線的距離的最值.
【答案】(1), ;(2)最大值為,最小值為
【解析】試題分析:(1)根據參數方程和極坐標化普通方程化法即易得結論的普通方程為;直線的普通方程為.(2)求點到線距離問題可借助參數方程,利用三角函數最值法求解即可故設, .即可得出最值
解析:(1)根據題意,由,得, ,
由,得,
故的普通方程為;
由及, 得,
故直線的普通方程為.
(2)由于為曲線上任意一點,設,
由點到直線的距離公式得,點到直線的距離為
.
∵ ,
∴ ,即 ,
故點到直線的距離的最大值為,最小值為.
點睛:首先要熟悉參數方程和極坐標方程化普通方程的方法,第一問基本屬于送分題所以務必抓住,對于第二問可以總結為一類題型,借助參數方程設點的方便轉化為三角函數最值問題求解
【題型】解答題
【結束】
23
【題目】已知函數,.
(1)解關于的不等式;
(2)若函數的圖象恒在函數圖象的上方,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知是拋物線的焦點,關于軸的對稱點為,曲線上任意一點滿足;直線和直線的斜率之積為.
(1)求曲線的方程;
(2)過且斜率為正數的直線與拋物線交于兩點,其中點在軸上方,與曲線交于點,若的面積為的面積為,當時,求直線的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com