精英家教網 > 高中數學 > 題目詳情

【題目】設數列滿足,,,表示不超過的最大整數,( )

A. 2018 B. 2019 C. 2020 D. 2021

【答案】C

【解析】

an+2﹣2an+1+an=2,可得an+2an+1﹣(an+1an)=2,a2a1=4.利用等差數列的通項公式、累加求和方法、取整函數即可得出.

an+2﹣2an+1+an=2,∴an+2an+1﹣(an+1an)=2,

a2a1=4.

∴{an+1an}是等差數列,首項為4,公差為2.

an+1an=4+2(n﹣1)=2n+2.

n≥2時,an=(anan1)+(an1an2)+……+(a2a1)+a1

=2n+2(n﹣1)+……+2×2+2nn+1).

1.

2+2018=2020.

故選:C

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】甲、乙兩人射擊,已知甲每次擊中目標的概率為,乙每次擊中目標的概率為

1)兩人各射擊一次,求至少有一人擊中目標的概率;

2)若制定規(guī)則如下:兩人輪流射擊,每人至多射擊2次,甲先射,若有人擊中目標即停止射擊.

①求乙射擊次數不超過1次的概率;

②記甲、乙兩人射擊次數和為,求的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某縣位于沙漠地帶,人與自然長期進行頑強的斗爭,到1996年底全縣的綠化率已達到30%(成為綠洲).從1997年開始,每年將出現這樣的局面,原有沙漠面積的16%被栽上樹,改造為綠洲,而同時,原有綠洲面積的4%又被侵蝕,變?yōu)樯衬?/span>

(1)設全縣面積為1,1996年底綠洲面積為,經過年綠洲面積為.求證:

(2)至少需經過多少年的努力才能使全縣的綠化率超過60%(年取整數)?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數則不等式的解集為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知等差數列的前項和為,且滿足.

1)求數列的通項公式及前項和

2)求數列的前項和;

3)若,如果對任意,都有,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】ABC中,角A,B,C的對邊分別為a,b,c,且2bcosC+c=2a.

(Ⅰ)求角B的大。

(Ⅱ)若,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】提升城市道路通行能力,可為市民提供更多出行便利.我校某研究性學習小組對成都市一中心路段(限行速度為千米/小時)的擁堵情況進行調查統(tǒng)計,通過數據分析發(fā)現:該路段的車流速度(/千米)與車流密度(千米/小時)之間存在如下關系:如果車流密度不超過該路段暢通無阻(車流速度為限行速度);當車流密度在時,車流速度是車流密度的一次函數;車流密度一旦達到該路段交通完全癱瘓(車流速度為零).

1)求關于的函數

2)已知車流量(單位時間內通過的車輛數)等于車流密度與車流速度的乘積,求此路段車流量的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】證明:在任意個人中,可以找到兩個人,使得其余個人中,至少有個人他們中的每一個,或者都認識、;或者都不認識、

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐的底面是邊長為1的正方形,垂直于底面,.

1)求證; 

2)求平面與平面所成二面角的大;

3)設棱的中點為,求異面直線所成角的大小.

查看答案和解析>>

同步練習冊答案