已知函數(shù)),其中
(1)若曲線在點(diǎn)處相交且有相同的切線,求的值;
(2)設(shè),若對(duì)于任意的,函數(shù)在區(qū)間上的值恒為負(fù)數(shù),求的取值范圍.

(1);(2)

解析試題分析:(1)確定的值,需要確定兩個(gè)獨(dú)立的條件,依題意,首先在曲線上,代入得關(guān)于的方程,再,又得關(guān)于的方程,聯(lián)立求;(2)多元函數(shù),可采取選取主元法.由題意知,對(duì)任意的,在恒成立,首先采取參變分離法,變形為恒成立,左邊看作自變量為的函數(shù)
,只需求函數(shù)的最大值,且
試題解析:(1),切線斜率
由題知,即,解得
(2)由題知對(duì)任意的,在恒成立,
恒成立.
設(shè),則
,
,則對(duì)任意的,恒有,則恒有
當(dāng)時(shí),,函數(shù)單調(diào)遞減,
當(dāng)時(shí),,函數(shù)單調(diào)遞增。
=4,
所以,即
考點(diǎn):1、導(dǎo)數(shù)的幾何意義;2、利用導(dǎo)數(shù)求函數(shù)的極值、最值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知是自然對(duì)數(shù)的底數(shù),函數(shù).
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)當(dāng)時(shí),函數(shù)的極大值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),
(1)求函數(shù)的單調(diào)區(qū)間;
(2)在區(qū)間內(nèi)存在,使不等式成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

一個(gè)圓柱形圓木的底面半徑為1m,長(zhǎng)為10m,將此圓木沿軸所在的平面剖成兩個(gè)部分.現(xiàn)要把其中一個(gè)部分加工成直四棱柱木梁,長(zhǎng)度保持不變,底面為等腰梯形(如圖所示,其中O為圓心,在半圓上),設(shè),木梁的體積為V(單位:m3),表面積為S(單位:m2).

(1)求V關(guān)于θ的函數(shù)表達(dá)式;
(2)求的值,使體積V最大;
(3)問(wèn)當(dāng)木梁的體積V最大時(shí),其表面積S是否也最大?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)為實(shí)數(shù),函數(shù)
(1)求的單調(diào)區(qū)間與極值;
(2)求證:當(dāng)時(shí),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù).
(1)若函數(shù)在區(qū)間(-2,0)內(nèi)恰有兩個(gè)零點(diǎn),求a的取值范圍;
(2)當(dāng)a=1時(shí),求函數(shù)在區(qū)間[t,t+3]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知處取得極值,且在點(diǎn)處的切線斜率為.
⑴求的單調(diào)增區(qū)間;
⑵若關(guān)于的方程在區(qū)間上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的極值;
(2)設(shè)函數(shù)若函數(shù)上恰有兩個(gè)不同零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=,且f(x)的圖象在x=1處與直線y=2相切.
(1)求函數(shù)f(x)的解析式;
(2)若P(x0,y0)為f(x)圖象上的任意一點(diǎn),直線l與f(x)的圖象切于P點(diǎn),求直線l的斜率k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案