【題目】已知函數(shù)為奇函數(shù),且相鄰兩對(duì)稱軸間的距離為.
(Ⅰ)當(dāng)時(shí),求的單調(diào)遞減區(qū)間;
(Ⅱ)將函數(shù)的圖象沿軸方向向右平移個(gè)單位長(zhǎng)度,再把橫坐標(biāo)縮短到原來的(縱坐標(biāo)不變),
得到函數(shù)的圖象.當(dāng)時(shí),求函數(shù)的值域.
【答案】(I);(II).
【解析】
試題分析:(I)通過三角恒等變換把化成,由題意得到周期,求得,根據(jù)函數(shù)的奇偶性和的范圍求出其值,得到,由得到的范圍,找到單調(diào)遞減區(qū)間,求出的范圍即可;(II)根據(jù)函數(shù)圖象的變換法則得到,由得,求出的范圍.
試題解析:(I)由題意得:,
因?yàn)橄噜弮蓪?duì)稱軸間的距離為,所以,,
又因?yàn)楹瘮?shù)為奇函數(shù),所以,且,所以,
故函數(shù)為
要使單調(diào)減,需滿足,所以函數(shù)的減區(qū)間為.
(II)由題意可得:,
,,
,,即函數(shù)的值域?yàn)?/span>.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知|a|=4,|b|=8,a與b的夾角是120°.
(1) 計(jì)算:① |a+b|,② |4a-2b|;
(2) 當(dāng)k為何值時(shí),(a+2b)⊥(ka-b)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在對(duì)應(yīng)的邊分別為,
且,
(1)求角A,
(2)求證:
(3)若,且BC邊上的中線AM長(zhǎng)為,求的面積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知R,函數(shù)=.
(1)當(dāng)時(shí),解不等式>1;
(2)若關(guān)于的方程+=0的解集中恰有一個(gè)元素,求的值;
(3)設(shè)>0,若對(duì)任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過1,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】食品添加劑會(huì)引起血脂增高、血壓增高、血糖增高等疾病,為了解三高疾病是否與性別有關(guān),醫(yī)院隨機(jī)對(duì)入院的60人進(jìn)行了問卷調(diào)查,得到了如下的列聯(lián)表:
(1)請(qǐng)將列聯(lián)表補(bǔ)充完整;若用分層抽樣的方法在患三高疾病的人群中抽9人,其中女性抽幾人?
患三高疾病 | 不患三高疾病 | 合計(jì) | |
男 | 6 | 30 | |
女 | |||
合計(jì) | 36 |
(2)為了研究三高疾病是否與性別有關(guān),請(qǐng)計(jì)算出統(tǒng)計(jì)量,并說明你有多大把握認(rèn)為患三高疾病與性別有關(guān).
下列的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系xOy中,已知F1、F2分別是橢圓C:+=1(a>b>0)的左、右焦點(diǎn),且右焦點(diǎn)F2的坐標(biāo)為(,0),點(diǎn)(,)在橢圓C上.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)在橢圓C上任取一點(diǎn)P,點(diǎn)Q在PO的延長(zhǎng)線上,且=2.
(1)當(dāng)點(diǎn)P在橢圓C上運(yùn)動(dòng)時(shí),求點(diǎn)Q形成的軌跡E的方程;
(2)若過點(diǎn)P的直線l:y=x+m交(1)中的曲線E于A,B兩點(diǎn),求△ABQ面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,.
(1)求當(dāng)時(shí),的值域;
(2)若函數(shù)在內(nèi)有且只有一個(gè)零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直三棱柱ABC-A1B1C1中,AB=AA1,∠CAB=.
(1)證明:CB1⊥BA1;
(2)已知AB=2,BC=,求三棱錐C1-ABA1的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com