【題目】設全集U=R,集合A={x|﹣1<x<4},B={y|y=x+1,x∈A},則A∩B=;(UA)∩(UB)= .
【答案】(0,4);(﹣∞,﹣1]∪[5,+∞)
【解析】解:全集U=R,集合A={x|﹣1<x<4}=(﹣1,4),B={y|y=x+1,x∈A}={y|0<y<5}=(0,5),
∴A∩B=(0,4)
∴UA={x|x≤1或x≥4}=(﹣∞,﹣1]∪[4,+∞),
UB={y|y≤0或y≥5}=(﹣∞,0]∪[5,+∞);
∴(UA)∩(UB)=(﹣∞,﹣1]∪[5,+∞).
所以答案是:(0,4),(﹣∞,﹣1]∪[5,+∞)
【考點精析】根據(jù)題目的已知條件,利用交、并、補集的混合運算的相關知識可以得到問題的答案,需要掌握求集合的并、交、補是集合間的基本運算,運算結果仍然還是集合,區(qū)分交集與并集的關鍵是“且”與“或”,在處理有關交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設條件,結合Venn圖或數(shù)軸進而用集合語言表達,增強數(shù)形結合的思想方法.
科目:高中數(shù)學 來源: 題型:
【題目】程序輸出的結果A是 ( )
INPUT “A=”;1
A=A*2
A=A*3
A=A*4
A=A*5
PRINT A
END
A. 5 B. 6 C. 15 D. 120
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設集合A={x|1<x<4},集合B={x|x2﹣2x﹣3≤0},則A∩(RB)=( 。
A.(1,4)
B.(3,4)
C.(1,3)
D.(1,2)∪(3,4)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若實數(shù)a,b,c滿足|a﹣c|<|b|,則下列不等式中成立的是( )
A.|a|>|b|﹣|c|
B.|a|<|b|+|c|
C.a>c﹣b
D.a<b+c
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給定集合A,若對于任意a,b∈A,有a+b∈A,且a﹣b∈A,則稱集合A為閉集合,給出如下三個結論: ①集合A={﹣4,﹣2,0,2,4}為閉集合;
②集合A={n|n=3k,k∈Z}為閉集合;
③若集合A1 , A2為閉集合,則A1∪A2為閉集合;
其中正確結論的序號是
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義區(qū)間(a,b)、[a,b)、(a,b]、[a,b]的長度均為d=b﹣a,用[x]表示不超過x的最大整數(shù),例如[3.2]=3,[﹣2.3]=﹣3.記{x}=x﹣[x],設f(x)=[x]{x},g(x)=x﹣1,若用d表示不等式f(x)<g(x)解集區(qū)間長度,則當0≤x≤3時有( )
A.d=1
B.d=2
C.d=3
D.d=4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com