已知是不同的直線,是不重合的平面,給出下面三個命題:
1若////.
2若//,//,則//.
3若是兩條異面直線,若//,//,//,////.
上面命題中,正確的序號為  (      )
A.1,2B.1,3C.2,3D.3
D
兩個平行平面內(nèi)的直線可能平行或異面,命題①不正確;
根據(jù)平面平行判定可知,只有當(dāng)一個平面內(nèi)的兩條相交直線分別于另外一平面平行時才能得到兩平面平行,命題②不正確;
,則存在。因為異面所以相交。而,所以,從而有,命題③正確。
綜上可得,只有命題③正確,故選D
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)如圖,三棱柱ABC—A1B1C1的所有棱長都是2,又平面
ABC,D、E分別是AC、CC1的中點。
(1)求證:平面A1BD;
(2)求二面角D—BA1—A的余弦值;
(3)求點B1到平面A1BD的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正方體的棱長為,分別為棱上的點,給出下列命題:
①在平面內(nèi)總存在與直線平行的直線;
②若平面,則的長度之和為;
③存在點使二面角的大小為;
④記與平面所成的角為與平面所成的角為,則的大小與點的位置無關(guān).
其中真命題的序號是      ▲     . (寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.(文)如圖,已知矩形的邊與正方形所在平面垂直,,是線段的中點。
(1)求異面直線與直線所成的角的大;
(2)求多面體的表面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)已知四棱錐中,,底面是邊長為的菱形,
(I)求證:;
(II)設(shè)交于點中點,若二面角的正切值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題14分)在五棱錐P-ABCDE中,PA=AB=AE=2,PB=PE=,BC=DE=1,∠EAB=∠ABC=∠DEA=90°.
(1)求證:PA⊥平面ABCDE;
(2)求二面角A-PD-E平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知長方體ABCD-A1B1C1D1中,AB=BC=4,CC1=2,則直線BC1和平面DBB1D1所成角的正弦值為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

直四棱柱中,底面是等腰梯形,,,的中點,中點.
(1) 求證:;
(2) 若,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

((本題14分)如圖3,四棱錐P—ABCD中,底面ABCD是矩形,PA⊥平面ABCD,M、N分別是AB、PC的中點,PA=AD=。
(Ⅰ)求證:MN//平面PAD;
(Ⅱ)求證:平面PMC⊥平面PCD;
(Ⅲ)若二面角P—MC—A是60°的二面角,求四棱錐P—ABCD的體積。

查看答案和解析>>

同步練習(xí)冊答案