【題目】設集合A={x|a﹣3<x<a+3},B={x|x2﹣2x﹣3>0}.
(1)若a=3,求A∩B,A∪B;
(2)若A∪B=R,求實數(shù)a的取值范圍.

【答案】
(1)解:若a=3,則A={x|0<x<6},

又B={x|x2﹣2x﹣3>0}={x|x<﹣1,或x>3},

所以A∩B={x|3<x<6},A∪B={x|x<﹣1,或x>0}


(2)解:若A∪B=R,則a﹣3<﹣1,且a+3>3,

即,a<2,且a>0,所以實數(shù)a的取值范圍為0<a<2


【解析】(1)根據(jù)題意,由a的值可得集合A,進而由集合交集、并集的定義,計算可得答案;(2)根據(jù)題意,若A∪B=R,則a﹣3<﹣1,且a+3>3,解可得a的取值范圍,即可得答案.
【考點精析】通過靈活運用集合的交集運算,掌握交集的性質(zhì):(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,則AB,反之也成立即可以解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】用長為90cm,寬為48cm的長方形鐵皮做一個無蓋的容器,先在四角分別截去一個小正方形,然后把四邊翻轉(zhuǎn)90°角,再焊接而成(如圖),問該容器的高為多少時,容器的容積最大?最大容積是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在單位正方體ABCD﹣A1B1C1D1中,O是B1D1的中點,如圖建立空間直角坐標系.

(1)求證:B1C∥平面ODC1;
(2)求異面直線B1C與OD夾角的余弦值;
(3)求直線B1C到平面ODC1的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知p:實數(shù)x滿足x2﹣4ax+3a2<0,其中a>0; q:實數(shù)x滿足2<x≤3.
(1)若a=1,且p∧q為真,求實數(shù)x的取值范圍;
(2)若p是q的必要不充分條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,底面是矩形, 平面, 是等腰三角形, , 的一個三等分點(靠近點),的延長線與的延長線交于點,連接

(1)求證: ;

(2)求證:在線段上可以分別找到兩點 ,使得直線平面,并分別求出此時的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為ab,c,若cb=2bcosA

(1)求證:A=2B;

(2)若cosBc=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C的圓心在直線x﹣2y=0上.
(1)若圓C與y軸的正半軸相切,且該圓截x軸所得弦的長為2 ,求圓C的標準方程;
(2)在(1)的條件下,直線l:y=﹣2x+b與圓C交于兩點A,B,若以AB為直徑的圓過坐標原點O,求實數(shù)b的值;
(3)已知點N(0,3),圓C的半徑為3,且圓心C在第一象限,若圓C上存在點M,使MN=2MO(O為坐標原點),求圓心C的縱坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 , 的夾角為60°, , ,當實數(shù)k為何值時,
(1)
(2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】解答題
(1)已知x+x1=3,求下列各式 ,x2+x2的值;
(2)求值:(lg2)2+lg2lg50+lg25.

查看答案和解析>>

同步練習冊答案