已知公差不為零的等差數(shù)列{an}的前4項和為10,且a2,a3,a7成等比數(shù)列.
(Ⅰ)求通項公式an
(Ⅱ)設(shè)bn=2an,求數(shù)列{bn}的前n項和Sn
(I)由題意可得,
4a1+6d=10
(a1+2d)2=(a1+d)(a1+6d)

∵d≠0
a1=-2
d=3

∴an=3n-5
(II)∵bn=2an=23n-5=
1
4
8n-1

∴數(shù)列{an}是以
1
4
為首項,以8為公比的等比數(shù)列
Sn=
1
4
(1-8n)
1-8
=
8n-1
28
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{an}是公差為d的等差數(shù)列,數(shù)列{bn}是公比為q的(q∈R且q≠1)的等比數(shù)列,若函數(shù)f(x)=(x-1)2,且a1=f(d-1),a3=f(d+1),b1=f(q+1),b3=f(q-1),
(1)求數(shù)列{an}和{bn}的通項公式;
(2)設(shè)數(shù)列{cn}的前n項和為Sn,對一切n∈N*,都有=an+1成立,求 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在數(shù)列{an}中,a1=16,數(shù)列{bn}是公差為-1的等差數(shù)列,且bn=log2an
(Ⅰ)求數(shù)列{an}和{bn}的通項公式;
(Ⅱ)在數(shù)列{bn}中,若存在正整數(shù)p,q使bp=q,bq=p(p>q),求p,q得值;
(Ⅲ)若記cn=an•bn,求數(shù)列{cn}的前n項的和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{an}的通項公式an=-2n+11,前n項和Sn
(1)求數(shù)列{an}的前n項和Sn;
(2)|a1|+|a2|+|a3|+…+|a14|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

數(shù)列{an}的前n項和公式是Sn,若an=
1
n(n+2)
,則S8等于( 。
A.
29
45
B.
45
29
C.
5
9
D.
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)等差數(shù)列{an}的前n項和為Sn,已知a3=9,S6=66.
(1)求數(shù)列{an}的通項公式an及前n項的和Sn
(2)設(shè)數(shù)列{
1
anan+1
}
的前n項和為Tn,證明:Tn
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

數(shù)列{an}的通項公式是an=
1
n+1
+
n
,若前n項和為3,則項數(shù)n的值為(  )
A.14B.15C.16D.17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{an}的前n項和為Sn,其中a1=
1
2
,5Sn=7an-an-1+5Sn-1(n≥2);等差數(shù)列{bn},其中b3=2,b5=6,.
(1)求數(shù)列{an}的通項公式;
(2)若cn=(bn+3)an,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在實數(shù)數(shù)列中,已知的最大值為        。

查看答案和解析>>

同步練習(xí)冊答案