奇函數(shù)f(x)=ax3+bx2+cx的圖象E過點A(-
2
2
),B(2
2
,10
2
)
兩點.
(1)求f(x)的表達式;
(2)求f(x)的單調區(qū)間;
(3)若方程f(x)+m=0有三個不同的實根,求m的取值范圍.
分析:(1)用待定系數(shù)法求函數(shù)解析式,由f(x)是奇函數(shù)和A、B兩點在圖象上列出三個方程,解出a、b、c
(2)求導,利用導數(shù)方法求單調區(qū)間
(3)將方程f(x)+m=0有三個不同的實根轉化為兩圖象y=f(x)和y=-m有三個交點,利用數(shù)形結合解決
解答:解:(1)∵f(x)=ax3+bx2+ax為奇函數(shù)∴f(-x)=-f(x),(x∈R),∴b=0
∴f(x)=ax3+cx
∵圖象過點A(-
2
2
)
、B(2
2
,10
2
)

-2
2
a-
2
c=
2
16
2
a+2
2
c=10
2
-2a-c=1
8a+c=5
,∴a=1,c=-3

∴f(x)=x3-3x(5分)
(2)∵f(x)=x3-3x,∴f'(x)=3x2-3=3(x-1)(x+1)
∴-1<x<1時,f'(x)<0;x<-1或x>1時,f′(x)>0
∴f(x)的增區(qū)間是(-∞,-1)和(1,+∞),減區(qū)間是(-1,1)(10分)
(3)∵f(-1)=2,f(1)=-2
為使方程f(x)+m=0即f(x)=-m有三個不等根,則-2<-m<2,即-2<m<2
∴m的取值范圍是(-2,2)
點評:本題考查待定系數(shù)法求函數(shù)解析式、利用導數(shù)求函數(shù)單調區(qū)間以及數(shù)形結合能力的運用,對提高學生思維能力有一定的作用
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知奇函數(shù)f(x),偶函數(shù)g(x)滿足f(x)+g(x)=ax(a>0且a≠1).
(1)求證:f(2x)=2f(x)g(x);
(2)設f(x)的反函數(shù)f-1(x),當a=
2
-1
時,比較f-1[g(x)]與-1的大小,證明你的結論;
(3)若a>1,n∈N*,且n≥2,比較f(n)與nf(1)的大小,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知k∈R,函數(shù)f(x)=ax+k•bx(a>0且a≠1,b>0且b≠1).
(Ⅰ)如果實數(shù)a,b滿足a>1且ab=1,函數(shù)f(x)是否具有奇偶性?如果有,求出相應的k值;如果沒有,說明原因.
(Ⅱ)如果a=4,b=
12
,討論函數(shù)f(x)的單調性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的奇函數(shù)f(x)和偶函數(shù)g(x)滿足f(x)+g(x)=ax-a-x+2(a>0,且a≠1),若g(2)=a,則f(2)=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的奇函數(shù)f(x)和偶函數(shù)g(x)滿足f(x)+g(x)=ax-a-x+2(a>0,且a≠1),若g(2)=a,則f(2)=
15
4
15
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•嘉定區(qū)二模)函數(shù)f(x)=ax-(k-1)a-x(a>0且≠1)是定義域為R的奇函數(shù).
(1)求k值;
(2)若f(1)<0,試判斷函數(shù)單調性并求使不等式f(x2+tx)+f(4-x)<0恒成立的t的取值范圍.

查看答案和解析>>

同步練習冊答案