已知定義在R上的奇函數(shù)f(x)和偶函數(shù)g(x)滿(mǎn)足f(x)+g(x)=ax-a-x+2(a>0,且a≠1),若g(2)=a,則f(2)=( 。
分析:根據(jù)條件構(gòu)造關(guān)于g(2)和f(2)的方程組來(lái)求解.
解答:解:因?yàn)閒(x)+g(x)=ax-a-x+2,
所以
f(2)+g(2)=a2-a-2+2
f(-2)+g(-2)=a-2-a2+2
,
因?yàn)閒(x)為奇函數(shù),g(x)為偶函數(shù),
所以
f(2)+g(2)=a2-a-2+2
-f(2)+g(2)=a-2-a2+2
,
上述方程組中兩式相加得:2g(2)=4,即g(2)=2,
因?yàn)間(2)=a,所以a=2,
將g(2)=2,a=2代入方程組中任意一個(gè)可求得f(2)=
15
4

故選C.
點(diǎn)評(píng):題目所求與已知中出現(xiàn)的是g(2)和f(2),但是由于a的存在解不出f(2),故需要再結(jié)合奇偶性構(gòu)造第二個(gè)方程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的單調(diào)遞增奇函數(shù)以f(x),若當(dāng)0≤θ≤
π2
時(shí),f(cosθ+msinθ)+f(-2m-2)<0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的奇函數(shù)f(x).當(dāng)x<0時(shí),f(x)=x2+2x.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)問(wèn):是否存在實(shí)數(shù)a,b(a≠b),使f(x)在x∈[a,b]時(shí),函數(shù)值的集合為[
1
b
,
1
a
]
?若存在,求出a,b;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:大連二十三中學(xué)2011學(xué)年度高二年級(jí)期末測(cè)試試卷數(shù)學(xué)(理) 題型:選擇題

已知定義在R上的奇函數(shù),滿(mǎn)足,且在區(qū)間[0,2]上是增函

數(shù),則(     ).     

A.            B.

C.            D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012屆浙江省高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷 題型:選擇題

已知定義在R上的奇函數(shù),滿(mǎn)足,且在區(qū)間[0,1]上是增函

數(shù),若方程在區(qū)間上有四個(gè)不同的根,則

(     )

(A)     (B)      (C)      (D)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知定義在R上的單調(diào)遞增奇函數(shù)以f(x),若當(dāng)0≤θ≤數(shù)學(xué)公式時(shí),f(cosθ+msinθ)+f(-2m-2)<0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案