【題目】某商店為了更好地規(guī)劃某種商品進(jìn)貨的量,該商店從某一年的銷售數(shù)據(jù)中,隨機(jī)抽取了組數(shù)據(jù)作為研究對象,如下圖所示((噸)為該商品進(jìn)貨量, (天)為銷售天數(shù)):

2

3

4

5

6

8

9

11

1

2

3

3

4

5

6

8

Ⅰ)根據(jù)上表數(shù)據(jù)在下列網(wǎng)格中繪制散點(diǎn)圖;

Ⅱ)根據(jù)上表提供的數(shù)據(jù),求出關(guān)于的線性回歸方程

)在該商品進(jìn)貨量(噸)不超過6(噸)的前提下任取兩個(gè)值,求該商品進(jìn)貨量(噸)恰有一個(gè)值不超過3(噸)的概率.

<>參考公式和數(shù)據(jù): ,.

【答案】(1)見解析(2)(3)

【解析】分析:Ⅰ)在平面直角坐標(biāo)系中畫出對應(yīng)的散點(diǎn)圖即可

Ⅱ)根據(jù)公式先計(jì)算,再根據(jù)得到

)通過枚舉法可得基本事件的總數(shù)為10個(gè),而隨機(jī)事件“該商品進(jìn)貨量(噸)恰有一個(gè)值不超過3(噸)”所含的基本事件有個(gè),故所求概率為

詳解:(Ⅰ)散點(diǎn)圖如圖所示:

Ⅱ)依題意,,

,

,回歸直線方程為

) 由題意知,在該商品進(jìn)貨量不超過6噸共有5個(gè),設(shè)為編碼1,2,3,4,5號,任取兩個(gè)有(1,2)(1,3)(1,4)(1,5)(2,3)(2,4)(2,5)(3,4)(3,5)

(4,5)共10種,該商品進(jìn)貨量不超過3噸的有編號1,2號,超過3噸的是編號3,4,5號,該商品進(jìn)貨量恰有一次不超過3噸有(1,3)(1,4)(1,5)(2,3)(2,4)(2,5)6種,故該商品進(jìn)貨量恰有一次不超過3噸的概率為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究性學(xué)習(xí)小組調(diào)查研究學(xué)生使用智能手機(jī)對學(xué)習(xí)的影響,部分統(tǒng)計(jì)數(shù)據(jù)如表經(jīng)計(jì)算,則下列選項(xiàng)正確的是( )

使用智能手機(jī)

不使用智能手機(jī)

合計(jì)

學(xué)習(xí)成績優(yōu)秀

4

8

12

學(xué)習(xí)成績不優(yōu)秀

16

2

18

合計(jì)

20

10

30

附表

0.025

0.010

0.005

0.001

5.024

6.635

7.879

10.828

A. 有99.5%的把握認(rèn)為使用智能手機(jī)對學(xué)習(xí)有影響

B. 有99.5%的把握認(rèn)為使用智能手機(jī)對學(xué)習(xí)無影響

C. 有99.9%的把握認(rèn)為使用智能手機(jī)對學(xué)習(xí)有影響

D. 有99.9%的把握認(rèn)為使用智能手機(jī)對學(xué)習(xí)無影響

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某省每年損失耕地20萬畝,每畝耕地價(jià)值24000元,為了減小耕地?fù)p失,決定按耕地價(jià)格的t%征收耕地占用稅,這樣每年的耕地?fù)p失可減少t萬畝,為了既減少耕地的損失又保證此項(xiàng)稅收一年不少于9000萬元,t變動(dòng)的范圍是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),求函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),若函數(shù)的極值為e,求的值;

(3)當(dāng)時(shí),若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在以為頂點(diǎn)的五面體中,底面是矩形, .

(1)證明: 平面;

(2)在中國古代數(shù)學(xué)經(jīng)典著作《九章算術(shù)》中,稱圖中所示的五面體為“芻甍”(chúméng),書中將芻甍的體積求法表述為:

術(shù)曰:倍下袤,上袤從之,以廣乘之,又以高乘之,六而一.其意思是:若芻甍的“下袤” 的長為,“上袤” 的長為,“廣” 的長為,“高”即“點(diǎn)到平面的距離”為,則芻甍的體積的計(jì)算公式為: ,證明該體積公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題文)已知正方體的棱長為1,每條棱所在直線與平面α所成的角都相等,則α截此正方體所得截面面積的最大值為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市交管部門為了宣傳新交規(guī)舉辦交通知識問答活動(dòng),隨機(jī)對該市15~65歲的人群抽樣,回答問題統(tǒng)計(jì)結(jié)果如圖表所示.

組別

分組

回答正確的人數(shù)

回答正確的人數(shù)占本組的概率

第1組

[15,25)

5

0.5

第2組

[25,35)

0.9

第3組

[35,45)

27

第4組

[45,55)

0.36

第5組

[55,65)

3

(1)分別求出的值;

(2)從第2,3,4組回答正確的人中用分層抽樣方法抽取6人,則第2,3,4組每組應(yīng)各抽取多少人?

(3)在(2)的前提下,決定在所抽取的6人中隨機(jī)抽取2人頒發(fā)幸運(yùn)獎(jiǎng),求:所抽取的人中第2組至少有1人獲得幸運(yùn)獎(jiǎng)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,已知曲線的參數(shù)方程為 為參數(shù)以原點(diǎn)為極點(diǎn)x軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為:,直線的極坐標(biāo)方程為

Ⅰ)寫出曲線的極坐標(biāo)方程,并指出它是何種曲線;

Ⅱ)設(shè)與曲線交于兩點(diǎn),與曲線交于兩點(diǎn),求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著小汽車的普及,“駕駛證”已經(jīng)成為現(xiàn)代人“必考”證件之一.若某人報(bào)名參加了駕駛證考試,要順利地拿到駕駛證,需要通過四個(gè)科目的考試,其中科目二為場地考試在每一次報(bào)名中,每個(gè)學(xué)員有次參加科目二考試的機(jī)會(huì)(這次考試機(jī)會(huì)中任何一次通過考試,就算順利通過,即進(jìn)入下一科目考試,或次都沒有通過,則需要重新報(bào)名),其中前次參加科目二考試免費(fèi),若前次都沒有通過,則以后每次參加科目二考試都需要交元的補(bǔ)考費(fèi).某駕校通過幾年的資料統(tǒng)計(jì),得到如下結(jié)論:男性學(xué)員參加科目二考試,每次通過的概率均為,女性學(xué)員參加科目二考試,每次通過的概率均為.現(xiàn)有一對夫妻同時(shí)報(bào)名參加駕駛證考試,在本次報(bào)名中,若這對夫妻參加科目二考試的原則為:通過科目二考試或者用完所有機(jī)會(huì)為止.

1)求這對夫妻在本次報(bào)名中參加科目二考試都不需要交補(bǔ)考費(fèi)的概率;

2)求這對夫妻在本次報(bào)名中參加科目二考試產(chǎn)生的補(bǔ)考費(fèi)用之和為元的概率.

查看答案和解析>>

同步練習(xí)冊答案