【題目】在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為為參數(shù)).以原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系.

1)求曲線C的極坐標(biāo)方程;

2)直線t為參數(shù))與曲線C交于A,B兩點(diǎn),求最大時(shí),直線l的直角坐標(biāo)方程.

【答案】1;(2.

【解析】

1)利用消去參數(shù),得到曲線的普通方程,再將,代入普通方程,即可求出結(jié)論;

2)由(1)得曲線表示圓,直線曲線C交于A,B兩點(diǎn),最大值為圓的直徑,直線過(guò)圓心,即可求出直線的方程.

1)由曲線C的參數(shù)方程為參數(shù)),

可得曲線C的普通方程為,

因?yàn)?/span>,

所以曲線C的極坐標(biāo)方程為,

.

2)因?yàn)橹本t為參數(shù))表示的是過(guò)點(diǎn)的直線,

曲線C的普通方程為

所以當(dāng)最大時(shí),直線l經(jīng)過(guò)圓心.

直線l的斜率為,方程為

所以直線l的直角坐標(biāo)方程為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,已知棱,兩兩垂直,長(zhǎng)度分別為1,2,2.若),且向量夾角的余弦值為.

(1)求的值;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知O為坐標(biāo)原點(diǎn),拋物線Cy2=8x上一點(diǎn)A到焦點(diǎn)F的距離為6,若點(diǎn)P為拋物線C準(zhǔn)線上的動(dòng)點(diǎn),則|OP|+|AP|的最小值為( 。

A. 4B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】謝賓斯基三角形是一種分形,由波蘭數(shù)學(xué)家謝賓斯基在1915年提出,先作一個(gè)正三角形.挖去一個(gè)“中心三角形”(即以原三角形各邊的中點(diǎn)為頂點(diǎn)的三角形),然后在剩下的小三角形中又挖去一個(gè)“中心三角形”,我們用白色代表挖去的面積,那么黑三角形為剩下的面積(我們稱黑三角形為謝賓斯基三角形).向圖中第5個(gè)大正三角形中隨機(jī)撒512粒大小均勻的細(xì)小顆粒物,則落在白色區(qū)域的細(xì)小顆粒物的數(shù)量約是(

A.256B.350C.162D.96

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知過(guò)橢圓的四個(gè)頂點(diǎn)與坐標(biāo)軸垂直的四條直線圍成的矩形是第一象限內(nèi)的點(diǎn))的面積為,且過(guò)橢圓的右焦點(diǎn)的傾斜角為的直線過(guò)點(diǎn)

1)求橢圓的標(biāo)準(zhǔn)方程

2)若射線與橢圓的交點(diǎn)分別為.當(dāng)它們的斜率之積為時(shí),試問(wèn)的面積是否為定值?若為定值,求出此定值;若不為定值,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是矩形,平面,的中點(diǎn),連接.

1)求證:;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知直三棱柱的底面為等腰直角三角形,點(diǎn)為線段的中點(diǎn).

1)探究直線與平面的位置關(guān)系,并說(shuō)明理由;

2)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于數(shù)列、,把和叫做數(shù)列的前項(xiàng)泛和,記作為.已知數(shù)列的前項(xiàng)和為,且.

1)求數(shù)列的通項(xiàng)公式;

2)數(shù)列與數(shù)列的前項(xiàng)的泛和為,且恒成立,求實(shí)數(shù)的取值范圍;

3)從數(shù)列的前項(xiàng)中,任取項(xiàng)從小到大依次排列,得到數(shù)列、、、;再將余下的項(xiàng)從大到小依次排列,得到數(shù)列、、.求數(shù)列與數(shù)列的前項(xiàng)的泛和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方體ABCDA1B1C1D1中,ED1D的中點(diǎn),ACBD的交點(diǎn)為O

1)求證:EO⊥平面AB1C;

2)在由正方體的頂點(diǎn)確定的平面中,是否存在與平面AB1C平行的平面?證明你的結(jié)論

查看答案和解析>>

同步練習(xí)冊(cè)答案