【題目】為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的房頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費(fèi)用(單位:萬元)與隔熱層厚度(單位:cm)滿足關(guān)系,若不建隔熱層,每年能源消耗費(fèi)用為8萬元,設(shè)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和.
(1)求的值及的表達(dá)式;
(2)隔熱層修建多厚時(shí),總費(fèi)用達(dá)到最小,并求最小值.
【答案】(1);(2)隔熱層修建時(shí),總費(fèi)用最小值為萬元.
【解析】
試題分析:(1)把代入可得,進(jìn)而得到的表達(dá)式;(2)利用均值不等式即可求得的最小值及相應(yīng)的值.
試題解析:(1)由已知條件得C(0)=8,則k=40,
f(x)=6x+20C(x)=6x+ (0≤x≤10).
(2) f(x)=6x+10+-10≥2-10=70(萬元),(也可以利用導(dǎo)求最小值).
當(dāng)且僅當(dāng)6x+10=,即x=5時(shí)等號成立.
當(dāng)隔熱層厚度為5 cm時(shí),總費(fèi)用f(x)達(dá)到最小值,最小值為70萬元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為正方形,點(diǎn)是棱的中點(diǎn),,平面平面.
(Ⅰ)求證://平面;
(Ⅱ)求證:平面;
(Ⅲ) 設(shè),試判斷平面⊥平面能否成立;若成立,寫出的一個(gè)值(只需寫出結(jié)論).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假設(shè)某設(shè)備的使用年限x(年)和所支出的維修費(fèi)用y(萬元)有如下的統(tǒng)計(jì)資料:
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
試求:(1)y與x之間的回歸方程;
(2)當(dāng)使用年限為10年時(shí),估計(jì)維修費(fèi)用是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)有一調(diào)查小組為了解本校學(xué)生假期中白天在家時(shí)間的情況,從全校學(xué)生中抽取人,統(tǒng)計(jì)他們平均每天在家的時(shí)間(在家時(shí)間在小時(shí)以上的就認(rèn)為具有“宅”屬性,否則就認(rèn)為不具有“宅”屬性)
具有“宅”屬性 | 不具有“宅”屬性 | 總計(jì) | |
男生 | 20 | 50 | 70 |
女生 | 10 | 40 | 50 |
總計(jì) | 30 | 90 | 120 |
(1)請根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表,并通過計(jì)算判斷能否在犯錯(cuò)誤的概率不超過
的前提下認(rèn)為“是否具有‘宅’屬性與性別有關(guān)?”
(2)采用分層抽樣的方法從具有“宅”屬性的學(xué)生里抽取一個(gè)人的樣本,其中男生和女生各多少人?
從人中隨機(jī)選取人做進(jìn)一步的調(diào)查,求選取的人至少有名女生的概率.
參考公式:,其中.
參考數(shù)據(jù):
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 5.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知分別為橢圓左、右焦點(diǎn),點(diǎn)在橢圓上,且軸,的周長為6.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)是橢圓上異于點(diǎn)的兩個(gè)動(dòng)點(diǎn),如果直線與直線的傾斜角互補(bǔ),證明:直線的斜率為定值,并求出這個(gè)定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)時(shí), 有恒成立, 求整數(shù)最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面,底面是直角梯形,,,,是的中點(diǎn).
(1)求證:平面平面;
(2)若二面角的余弦值為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三文科名學(xué)生參加了月份的模擬考試,學(xué)校為了了解高三文科學(xué)生的數(shù)學(xué)、語文情況,利用隨機(jī)數(shù)表法從中抽取名學(xué)生的成績進(jìn)行統(tǒng)計(jì)分析,抽出的名學(xué)生的數(shù)學(xué)、語文成績?nèi)缦卤?
(1)將學(xué)生編號為:, 若從第行第列的數(shù)開始右讀,請你依次寫出最先抽出的 個(gè)人的編號(下面是摘自隨機(jī)用表的第四行至第七行)
(2)若數(shù)學(xué)優(yōu)秀率為,求的值;
(3)在語文成績?yōu)榱嫉膶W(xué)生中,已知,求數(shù)學(xué)成績“優(yōu)”比“良”的人數(shù)少的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com