【題目】某校為了解全校高中學(xué)生五一小長假參加實(shí)踐活動(dòng)的情況,抽查了100名學(xué)生,統(tǒng)計(jì)他們假期參加實(shí)踐活動(dòng)的時(shí)間,繪成的頻率分布直方圖如圖所示.
(1)求這100名學(xué)生中參加實(shí)踐活動(dòng)時(shí)間在6~10小時(shí)內(nèi)的人數(shù);
(2)估計(jì)這100名學(xué)生參加實(shí)踐活動(dòng)時(shí)間的眾數(shù)、中位數(shù)和平均數(shù).
【答案】
(1)【解答】解:依題意,100名學(xué)生中參加實(shí)踐活動(dòng)的時(shí)間在6~10小時(shí)內(nèi)的人數(shù)為:
100×[1﹣(0.04+0.12+0.05)×2]=58,
即這100名學(xué)生中參加實(shí)踐活動(dòng)時(shí)間在6~10小時(shí)內(nèi)的人數(shù)為58.
(2)【解答】解:由頻率分布直方圖可以看出最高矩形橫軸上的中點(diǎn)為7,
故這100名學(xué)生參加實(shí)踐活動(dòng)時(shí)間的眾數(shù)的估計(jì)值為7小時(shí),
由(0.04+0.12+0.15+a+0.05)×2=1,解得a=0.14,
則6+ ,
即這100名學(xué)生參加實(shí)踐活動(dòng)時(shí)間的中位數(shù)為7.2小時(shí),
這100名學(xué)生參加實(shí)踐活動(dòng)時(shí)間的平均數(shù)為:
0.04×2×3+0.12×2×5+0.15×2×7+0.14×2×9+0.05×2×11=7.16小時(shí).
【解析】(1)利用頻率分布直方圖能求出100名學(xué)生中參加實(shí)踐活動(dòng)的時(shí)間在6~10小時(shí)內(nèi)的人數(shù).
(2)由頻率分布直方圖可以看出最高矩形橫軸上的中點(diǎn)為7,由此能求出這100名學(xué)生參加實(shí)踐活動(dòng)時(shí)間的眾數(shù)的估計(jì)值;(0.04+0.12+0.15+a+0.05)×2=1,求出a=0.14,即可求出這100名學(xué)生參加實(shí)踐活動(dòng)時(shí)間的中位數(shù)和平均數(shù)。
【考點(diǎn)精析】掌握頻率分布直方圖是解答本題的根本,需要知道頻率分布表和頻率分布直方圖,是對(duì)相同數(shù)據(jù)的兩種不同表達(dá)方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x+1)lnx﹣a(x﹣1).
(1)當(dāng)a=3時(shí),求曲線y=f(x)在(1,f(1))處的切線方程;
(2)設(shè) ,且a>1,討論函數(shù)g(x)的單調(diào)性和極值點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)奇函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(1)=0,則不等式x[(f(x)﹣f(﹣x)]<0的解集為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足an+1=an﹣2anan+1 , an≠0且a1=1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令 ,求數(shù)列{bn}的前2n項(xiàng)和T2n .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有7名學(xué)科競(jìng)賽優(yōu)勝者,其中語文學(xué)科是A1 , A2 , 數(shù)學(xué)學(xué)科是B1 , B2 , 英語學(xué)科是C1 , C2 , 物理學(xué)科是D1 , 從競(jìng)賽優(yōu)勝者中選出3名組成一個(gè)代表隊(duì),要求每個(gè)學(xué)科至多選出1名.
(1)求B1被選中的概率;
(2)求代表隊(duì)中有物理優(yōu)勝者的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線C1的參數(shù)方程為 ,曲線C2的極坐標(biāo)方程為 .
(1)求曲線C1的普通方程和曲線C2的直角坐標(biāo)方程;
(2)設(shè)P為曲線C1上一點(diǎn),Q曲線C2上一點(diǎn),求|PQ|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題:“x∈{x|﹣1<x<1},使等式x2﹣x﹣m=0成立”是真命題.
(1)求實(shí)數(shù)m的取值集合M;
(2)設(shè)不等式 的解集為N,若x∈N是x∈M的必要不充分條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com