【題目】設(shè)函數(shù)在區(qū)間上單調(diào)遞增;函數(shù)在其定義域上存在極值.
(1)若為真命題,求實數(shù)的取值范圍;
(2)如果“或”為真命題,“且”為假命題,求實數(shù)的取值范圍.
【答案】(1);(2).
【解析】
試題分析:(1)原命題等價于對恒成立對恒成立的取值范圍為;(2)求導(dǎo)得
若在定義域單調(diào)遞增,在其定義域上不存在極值,不符合題意;若,則,由若為真命題,則.由已知可得與一真一假或.
綜上所述,的取值范圍為.
試題解析: (1)因為,
所以對恒成立,....................1分
因為,所以對恒成立,..............3分
所以,即的取值范圍為..............4分
(2)對于,..............5分
若在定義域單調(diào)遞增,在其定義域上不存在極值,不符合題意;........6分
若,則,由,解得,
所以,若為真命題,則,..............8分
因為“或”為真命題,“且”為假命題,所以命題與一真一假,
①真假時,,解得,
②假真時,,解得
綜上所述,的取值范圍為...................12分
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓M的方程為x2+(y-2)2=1,直線l的方程為x-2y=0,點P在直線l上,過點P作圓M的切線PA,PB,切點為A,B.
(Ⅰ)若∠APB=60°,試求點P的坐標(biāo);
(Ⅱ)若P點的坐標(biāo)為(2,1),過P作直線與圓M交于C,D兩點,當(dāng)CD=時,求直線CD的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(, 是自然對數(shù)的底數(shù)).
(1)當(dāng)時,求曲線在點處的切線方程;
(2)當(dāng)時,不等式恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)全集U=R,集合A={x|-1≤x<3},B={x|2x-4≥x-2}.
(1)求U(A∩B);
(2)若集合C={x|2x+a>0},滿足B∪C=C,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】類比平面內(nèi)正三角形的“三邊相等,三內(nèi)角相等”的性質(zhì),可推出正四面體的下列一些性質(zhì),你認(rèn)為比較恰當(dāng)?shù)氖牵?)
①各棱長相等,同一頂點上的任兩條棱的夾角都相等;②各個面都是全等的正三角形,相鄰兩個面所成的二面角都相等;③各個面都是全等的正三角形,同一頂點上的任兩條棱的夾角都相等。
A. ① B. ②③ C. ①② D. ①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在各項都不相等的等差數(shù)列{an}中,a1,a2是關(guān)于x的方程x2-7a4x+18a3=0的兩個實根.
(1) 試判斷-22是否在數(shù)列{an}中;
(2) 求數(shù)列{an}的前n項和Sn的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義區(qū)間(a,b),[a,b),(a,b],[a,b]的長度均為,多個區(qū)間并集的長度為各區(qū)間長度之和,例如,(1,2) [3,5)的長度d=(2-1)+(5-3)=3. 用[x]表示不超過x的最大整數(shù),記{x}=x-[x],其中.設(shè), ,當(dāng)時,不等式解集區(qū)間的長度為,則的值為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABCA1B1C1中,已知AB⊥側(cè)面BB1C1C,AB=BC=1,BB1=2,∠BCC1= .
(1)求證:C1B⊥平面ABC;
設(shè) (0≤λ≤1),且平面AB1E與BB1E所成的銳二面角的大小為30°,
試求λ的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com