解:(Ⅰ)因為f'(x)=x
2-2x=x(x-2)…(1分)
由f'(x)>0?x>2或x<0;由f'(x)<0?0<x<2,
所以當(dāng)t=3時,f(x)在(-1,0),(2,3)上遞增,在(0,2)上遞減 …(3分)
因為
,f(0)=3,
,f(3)=3,
所以當(dāng)x=-1或2時,函數(shù)f(x)取最小值
,…(5分)
當(dāng)x=0或3時,函數(shù)f(x)取最大值f(0)=3,…(6分)
(Ⅱ)解法1:因為f'(x)=x
2-2x,所以
,
令
,
因為
,
,…(9分)
所以①當(dāng)t>5或-1<t<2時,p(-2)•p(t)<0,所以p(x)=0在(-2,t)上有且只有一解…(11分)
②當(dāng)2<t<5時,p(-2)>0且p(t)>0,但由于
,
所以p(x)=0在(-2,t)上有兩解 …(13分)
③當(dāng)t=2時,p(x)=x
2-2x=0?x=0或x=2,所以p(x)=0在(-2,t)上有且只有一解x=0;
當(dāng)t=5時,p(x)=x
2-2x-3=0?x=-1或x=3,
所以p(x)=0在(-1,5)上也有且只有一解x=3…(14分)
綜上所述,當(dāng)t≥5或-1<t≤2時,有唯一的x
0適合題意;當(dāng)2<t<5時,有兩個x
0適合題意.…(15分)
解法2:畫出f'(x)=x
2-2x與
的圖象,
(1)當(dāng)-1<t≤0時,兩圖象有一個交點,有唯一的x
0適合題意;-------------(8分)
(2)當(dāng)0<t≤2時,
,此時兩圖象有一個交點,有唯一的x
0適合題意;-------------(10分)
(3)當(dāng)2<t<5時,因為f'(-1)=f'(3)=3,
得到t
1=-1,t
2=5,
,此時兩圖象有兩個交點,有兩個x
0適合題意;------(12分)
(4)當(dāng)t=2或t=5時,當(dāng)t=2時,p(x)=x
2-2x=0?x=0或x=2,所以p(x)=0在(-2,t)上有且只有一解x=0;
當(dāng)t=5時,p(x)=x
2-2x-3=0?x=-1或x=3
,
此時兩圖象有兩個交點,有兩個x
0適合題意;---------------------(14分)
綜上所述,當(dāng)t≥5或-1<t≤2時,有唯一的x
0適合題意;
當(dāng)2<t<5時,有兩個x
0適合題意.…(15分)
分析:(Ⅰ)由題意,對函數(shù)求導(dǎo)得到f'(x)=x
2-2x=x(x-2),可得出當(dāng)t=3時,f(x)在(-1,0),(2,3)上遞增,在(0,2)上遞減,由此函數(shù)的最值與單調(diào)區(qū)間易求得;
(II)解法一:由題意函數(shù)
.記方程f'(x)=g(t),可得出
,由于方程f'(x)=g(t)的解為x
0,x
0∈(-1,t),故可構(gòu)造函數(shù)
在x
0∈(-1,t),分類討論x
0的個數(shù);
解法二:可作出兩函數(shù)f'(x)=x
2-2x與
的圖象,由圖象對t的取值范圍分類討論得出每一種情況下兩個函數(shù)圖象的交點個數(shù)即可得到x
0的個數(shù).
點評:本題考查導(dǎo)數(shù)在最值問題中的應(yīng)用,考查了求導(dǎo)的運(yùn)算,由導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,方程的交點個數(shù)與方程相應(yīng)函數(shù)的交點的對應(yīng)關(guān)系解題的關(guān)鍵是理解題意靈活利用導(dǎo)數(shù)的知識求最值,研究單調(diào)性,本題解題的難點在第二小題,由于t的取值范圍不同,方程的根的個數(shù)不同,故采取了分類討論的方法,本題考查了分類討論的思想,轉(zhuǎn)化的思想,及推理判斷的能力,計算能力,本題綜合性強(qiáng),運(yùn)算量大,易出錯,做題時要嚴(yán)謹(jǐn).