【題目】下列說法中:

①“若,則”的否命題是“若,則”;

②“”是“”的必要非充分條件;

③“”是“”的充分非必要條件;

④“”是“”的充要條件.

其中正確的序號為__________

【答案】

【解析】

根據(jù)否命題與原命題的關系可判斷命題①的正誤;解方程,根據(jù)充分必要性可判斷出命題②的正誤;由命題“若,則”的逆否命題為“若,則”得出“”是“”的充分必要性與“”是“”的充分必要性相同,從而判斷命題③的正誤;利用舉反例和邏輯推理來判斷命題④的正誤.

對于命題①,“若,則”的否命題是“若,則”,命題①錯誤;

對于命題②,解方程,得

所以,“”是“”的充分非必要條件,命題②錯誤;

對于命題③,由于命題“若,則”的逆否命題為“若,則”,可知,“”是“”的充分必要性與“”是“”的充分必要性相同,

”,取,則,所以,“”,則“”是“”的充分非必要條件,

所以,“”是“”的充分非必要條件,命題③正確;

對于命題④,取,,則滿足,但“”,

由不等式性質可知,當,有,則“.

所以,“”必要非充分條件,命題④錯誤.

故答案為:③.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知曲線的參數(shù)方程為, 為參數(shù)).以坐標原點為極點, 軸的正半軸為極軸,取相同的長度單位建立極坐標系,直線的極坐標方程為.

(1)當時,求曲線上的點到直線的距離的最大值;

(2)若曲線上的所有點都在直線的下方,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中, , ,以為直徑的圓記為圓,圓過原點的切線記為,若以原點為極點, 軸正半軸為極軸建立極坐標系.

(1)求圓的極坐標方程;

(2)若過點,且與直線垂直的直線與圓交于, 兩點,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著共享單車的成功運營,更多的共享產(chǎn)品逐步走入大家的世界,共享汽車、共享籃球、共享充電寶等各種共享產(chǎn)品層出不窮.某公司隨機抽取人對共享產(chǎn)品對共享產(chǎn)品是否對日常生活有益進行了問卷調(diào)查,并對參與調(diào)查的人中的性別以及意見進行了分類,得到的數(shù)據(jù)如下表所示:

(Ⅰ)根據(jù)表中的數(shù)據(jù),能否在犯錯的概率不超過的前提下,認為對共享產(chǎn)品的態(tài)度與性別有關系?

Ⅱ)現(xiàn)按照分層抽樣從認為共享產(chǎn)品增多對生活無益的人員中隨機抽取人,再從人中隨機抽取人贈送超市購物券作為答謝,求恰有人是女性的概率.

參考公式 .

臨界值表:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種樹苗栽種時高度為A(A為常數(shù))米,栽種n年后的高度記為f(n).經(jīng)研究發(fā)現(xiàn)f(n)近似地滿足 f(n),其中,a,b為常數(shù),n∈N,f(0)A.已知栽種3年后該樹木的高度為栽種時高度的3倍.

1)栽種多少年后,該樹木的高度是栽種時高度的8倍;

2)該樹木在栽種后哪一年的增長高度最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】采用系統(tǒng)抽樣方法從人中抽取人做問卷調(diào)查,為此將他們隨機編號為,,分組后某組抽到的號碼為41.抽到的人中,編號落入?yún)^(qū)間 的人數(shù)為( )

A. 10 B. C. 12 D. 13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓的長軸長為4,離心率為,過點的直線l交橢圓于兩點,與x軸交于P點,點關于軸的對稱點為,直線軸于點.

(1)求橢圓方程;

(2)求證:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是定義在上的奇函數(shù),對,均有,已知當時, ,則下列結論正確的是( )

A. 的圖象關于對稱 B. 有最大值1

C. 上有5個零點 D. 時,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),則下列結論正確的是(  )

A. 導函數(shù)為

B. 函數(shù)f(x)的圖象關于直線對稱

C. 函數(shù)f(x)在區(qū)間上是增函數(shù)

D. 函數(shù)f(x)的圖象可由函數(shù)y3cos 2x的圖象向右平移個單位長度得到

查看答案和解析>>

同步練習冊答案