【題目】下列關(guān)于回歸分析的說法中錯誤的是( )
A.殘差圖中殘差點比較均勻地落在水平的帶狀區(qū)域中,說明選用的模型比較合適
B.兩個模型中殘差平方和越小的模型擬合的效果越好
C.在線性回歸方程中,當(dāng)解釋變量x每增加一個單位時,預(yù)報變量就平均增加0.2個單位
D.甲、乙兩個模型的分別約為0.98和0.80,則模型乙的擬合效果更好
【答案】D
【解析】
根據(jù)回歸分析的相關(guān)概念對各個選項一一進行判斷可得答案.
解:A項,殘差可用于判斷模型的模擬效果,當(dāng)殘差圖中殘差點比較均勻地落在水平的帶狀區(qū)域中,說明模擬效果好,選用的模型比較合適;當(dāng)殘差圖中殘差點之間相差越大,形成帶狀區(qū)間越寬,則模擬效果越差,故A項表述正確;
B項,殘差平方和即全部誤差的平方和,殘差平方和越小,則全部誤差越小,模型擬合的效果越好,故B項表述正確;
C. 由線性回歸方程的性質(zhì),在方程中,當(dāng)解釋變量x每增加一個單位時,預(yù)報變量就平均增加0.2個單位,可得C項表述正確;
D項,是指相關(guān)系數(shù),的值越大,說明相關(guān)程度越強,則殘差平方和越小,模型的擬合效果越好,故模型甲的擬合效果更好;
故選:D.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的圓心為,點是圓上的動點,點,線段的垂直平分線交于點.
(1)求點的軌跡的方程;
(2)過點作斜率不為0的直線與(1)中的軌跡交于,兩點,點關(guān)于軸的對稱點為,連接交軸于點,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦點坐標(biāo)是,過點且垂直于長軸的直線交橢圓于兩點,且.
(1)求橢圓的標(biāo)準方程;
(2)過點的直線與橢圓交于不同的兩點,問三角形內(nèi)切圓面積是否存在最大值?若存在,請求出這個最大值及此時直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為實數(shù).
(1)當(dāng)時,求函數(shù)在上的最大值和最小值;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若函數(shù)的導(dǎo)函數(shù)在上有零點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下四個命題:①命題“若,則”的逆否命題為“若,則”;②“”是“”的充分不必要條件; ③若為假命題,則均為假命題;④對于命題使得,則為,均有.其中,真命題的個數(shù)是 ( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義在R 且周期為1的函數(shù),在區(qū)間上, 其中集合D=,則方程f(x)-lgx=0的解的個數(shù)是____________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B是半徑為2的圓周上的定點,P為圓周上的動點,是銳角,大小為β.圖中陰影區(qū)域的面積的最大值為
A. 4β+4cosβB. 4β+4sinβC. 2β+2cosβD. 2β+2sinβ
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列說法:
①命題“若 ,則 ”的否命題是假命題;
②命題 ,使 ,則 ;
③“ ”是“函數(shù) 為偶函數(shù)”的充要條件;
④命題 “ ,使 ”,命題 “在 中,若 ,則 ”,那么命題為真命題.
其中正確的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com