【題目】設、是兩條不同直線, 、是兩個不同平面,則下列四個命題:
① 若, , ,則;
② 若, ,則;
③ 若, ,則或;
④ 若, , ,則.
其中正確命題的個數(shù)為 ( )
A. 1 B. 2 C. 3 D. 4
科目:高中數(shù)學 來源: 題型:
【題目】2016年巴西奧運會的周邊商品有80%左右為“中國制造”,所有的廠家都是經過層層篩選才能獲此殊榮.甲、乙兩廠生產同一產品,為了解甲、乙兩廠的產品質量,以確定這一產品最終的供貨商,采用分層抽樣的方法從甲、乙兩廠生產的產品共98件中分別抽取9件和5件,測量產品中的微量元素的含量(單位:毫克).下表是從乙廠抽取的5件產品的測量數(shù)據(jù):
編號 | 1 | 2 | 3 | 4 | 5 |
169 | 178 | 166 | 175 | 180 | |
75 | 80 | 77 | 70 | 81 |
(1)求乙廠生產的產品數(shù)量:
(2)當產品中的微量元素滿足:,且時,該產品為優(yōu)等品.用上述樣本數(shù)據(jù)估計乙廠生產的優(yōu)等品的數(shù)量:
(3)從乙廠抽出的上述5件產品中,隨機抽取2件,求抽取的2件產品中優(yōu)等品數(shù)的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】公元263年左右,我國古代數(shù)學家劉徽用圓內接正多邊形的面積去逼近圓的面積求圓周率,劉徽稱這個方法為“割圓術”,并且把“割圓術”的特點概括為“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”,下圖是根據(jù)劉徽的“割圓術”思想設計的一個程序框圖,若運行該程序,則輸出的的值為( )(參考數(shù)據(jù): , , )
A. 24 B. 30 C. 36 D. 48
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=ex﹣ax2,曲線y=f(x)在(1,f(1))處的切線方程為y=bx+1.
(1)求a,b的值;
(2)求f(x)在[0,1]上的最大值;
(3)證明:當x>0時,ex+(1﹣e)x﹣xlnx﹣1≥0.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有13名醫(yī)生,其中女醫(yī)生6人,現(xiàn)從中抽調5名醫(yī)生組成醫(yī)療小組前往災區(qū),若醫(yī)療小組至少有2名男醫(yī)生,同時至多有3名女醫(yī)生,設不同的選派方法種數(shù)為N,則下列等式:
①C135﹣C71C64;②C72C63+C73C62+C74C61+C75;
③C135﹣C71C64﹣C65; ④C72C113;
其中能成為N的算式是______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題正確的個數(shù)是( )
①命題“x0∈R,x+1>3x0”的否定是“x∈R,x2+1≤3x”;
②“函數(shù)f(x)=cos2ax-sin2ax的最小正周期為π”是“a=1”的必要不充分條件;
③x2+2x≥ax在x∈[1,2]上恒成立(x2+2x)min≥(ax)max在x∈[1,2]上恒成立;
④“平面向量a與b的夾角是鈍角”的充要條件是“a·b<0”.
A.1 B.2
C.3 D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),且函數(shù)在和處都取得極值.
(1)求實數(shù)與的值;
(2)對任意,方程存在三個實數(shù)根,求實數(shù)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,圓,經過原點的兩直線滿足,且交圓于不同兩點交, 圓于不同兩點,記的斜率為
(1)求的取值范圍;
(2)若四邊形為梯形,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com