如圖,在中,,,,點是的中點, 求:
(1)邊的長;
(2)的值和中線的長
(1)2 (2)
解析試題分析:
(1)利用角C的余弦值通過正余弦之間的關(guān)系可以求的C角的正弦值,已知角B的大小可以計算角B的正弦值,在三角形ABC中,已知角c,角B的正弦值與b邊的大小,則可以根據(jù)三角形ABC的正弦定理即可求的AB長.
(2)從(1)和已知可以求的B,C兩個角的正余弦值,由于三角形內(nèi)角和180度,故A角的余弦值可以通過誘導(dǎo)公式和余弦的和差角公式轉(zhuǎn)化為B,C兩角正余弦值來表示,從而得到A角的余弦值,在三角形ADC中利用A角的余弦定理即可求的CD的長度.
試題解析:
(1)由可知,是銳角,
所以, .2分
由正弦定理 5分
(2)
8分
由余弦定理:
12分
考點:正余弦和差角公式 三角形正余弦定理
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,扇形,圓心角的大小等于,半徑為2,在半徑上有一動點,過點作平行于的直線交弧于點.
(1)若是半徑的中點,求線段的長;
(2)設(shè),求面積的最大值及此時的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)的圖像上兩相鄰最高點的坐標(biāo)分別為.
(1)求的值;
(2)在中,分別是角的對邊,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在△ABC中,角A,B,C的對邊分別為a,b,c,C=,a=5,△ABC的面積為10.
(1)求b,c的值;
(2)求cos的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,cos B=.
(1)求cos(A+C)的值;
(2)求sin的值;
(3)若·=20,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在△ABC中,角A,B,C所對的邊分別為a,b,c,且(2a+c)··+c·=0.
(1)求角B的大小;
(2)若b=2,試求·的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在△ABC中,a、b、c分別為角A、B、C所對的邊,且c=-3bcosA,tanC=.
(1)求tanB的值;
(2)若c=2,求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com