【題目】過雙曲線x2﹣ =1的右支上一點(diǎn)P,分別向圓C1:(x+4)2+y2=4和圓C2:(x﹣4)2+y2=1作切線,切點(diǎn)分別為M,N,則|PM|2﹣|PN|2的最小值為( )
A.10
B.13
C.16
D.19
【答案】B
【解析】解:圓C1:(x+4)2+y2=4的圓心為(﹣4,0),半徑為r1=2;圓C2:(x﹣4)2+y2=1的圓心為(4,0),半徑為r2=1,
設(shè)雙曲線x2﹣ =1的左右焦點(diǎn)為F1(﹣4,0),F(xiàn)2(4,0),
連接PF1 , PF2 , F1M,F(xiàn)2N,可得
|PM|2﹣|PN|2=(|PF1|2﹣r12)﹣(|PF2|2﹣r22)
=(|PF1|2﹣4)﹣(|PF2|2﹣1)
=|PF1|2﹣|PF2|2﹣3=(|PF1|﹣|PF2|)(|PF1|+|PF2|)﹣3
=2a(|PF1|+|PF2|﹣3=2(|PF1|+|PF2|)﹣3≥22c﹣3=28﹣3=13.
當(dāng)且僅當(dāng)P為右頂點(diǎn)時(shí),取得等號(hào),
即最小值13.
故選B.
求得兩圓的圓心和半徑,設(shè)雙曲線x2﹣ =1的左右焦點(diǎn)為F1(﹣4,0),F(xiàn)2(4,0),連接PF1 , PF2 , F1M,F(xiàn)2N,運(yùn)用勾股定理和雙曲線的定義,結(jié)合三點(diǎn)共線時(shí),距離之和取得最小值,計(jì)算即可得到所求值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x),g(x)分別是定義在R上的奇函數(shù)和偶函數(shù),且f(x)+g(x)=3x .
(1)求 f(x),g(x);
(2)若對(duì)于任意實(shí)數(shù)t∈[0,1],不等式f(2t)+ag(t)<0恒成立,求實(shí)數(shù)a的取值范圍;
(3)若存在m∈[﹣2,﹣1],使得不等式af(m)+g(2m)<0成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù)f(x)=2sin(3x﹣ ),有下列命題:①其表達(dá)式可改寫為y=2cos(3x﹣ );②y=f(x)的最小正周期為 ;③y=f(x)在區(qū)間( , )上是增函數(shù);④將函數(shù)y=2sin3x的圖象上所有點(diǎn)向左平行移動(dòng) 個(gè)單位長(zhǎng)度就得到函數(shù)y=f(x)的圖象.其中正確的命題的序號(hào)是(注:將你認(rèn)為正確的命題序號(hào)都填上).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}是等比數(shù)列,首項(xiàng)a1=1,公比q>0,其前n項(xiàng)和為Sn,且S1+a1,S3+a3,S2+a2成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足,Tn為數(shù)列{bn}的前n項(xiàng)和,若Tn≥m恒成立,求m的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一條寬為的兩平行河岸有村莊和供電站,村莊與的直線距離都是, 與河岸垂直,垂足為現(xiàn)要修建電纜,從供電站向村莊供電.修建地下電纜、水下電纜的費(fèi)用分別是萬元、萬元.
(1) 如圖①,已知村莊與原來鋪設(shè)有電纜,現(xiàn)先從處修建最短水下電纜到達(dá)對(duì)岸后后,再修建地下電纜接入原電纜供電,試求該方案總施工費(fèi)用的最小值;
(2) 如圖②,點(diǎn)在線段上,且鋪設(shè)電纜的線路為.若,試用表示出總施工費(fèi)用(萬元)的解析式,并求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在(﹣1,1)上的函數(shù)f(x)滿足: ,當(dāng)x∈(﹣1,0)時(shí),有f(x)>0,且 .設(shè) ,則實(shí)數(shù)m與﹣1的大小關(guān)系為( )
A.m<﹣1
B.m=﹣1
C.m>﹣1
D.不確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=loga ,(a>0且a≠1).
(1)判斷f(x)的奇偶性,并加以證明;
(2)是否存在實(shí)數(shù)m使得f(x+2)+f(m﹣x)為常數(shù)?若存在,求出m的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:x∈A,且A={x|a﹣1<x<a+1},命題q:x∈B,且B={x|x2﹣4x+3≥0}
(Ⅰ)若A∩B=,A∪B=R,求實(shí)數(shù)a的值;
(Ⅱ)若p是q的充分條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com