【題目】已知數(shù)列的前項和為,且,數(shù)列滿足,且.
(1)求數(shù)列,的通項公式;
(2)若,數(shù)列的前項和為,若不等式對一切恒成立,求實數(shù)的取值范圍.
【答案】(1)..(2)
【解析】
(1)由代入計算可得;將代入,可得,可得;
(2)由,可得的通項公式,由錯位相減法可得的值,由,可得,分為偶數(shù)與奇數(shù)進行討論,可得實數(shù)的取值范圍.
(1)由已知可得.
當時,,,
所以.
顯然也滿足上式,
所以.
因為,所以.
又,
所以數(shù)列是首項為2,公比為2的等比數(shù)列.
所以.
(2)由(1)可得,
所以.
所以,
所以,
兩式作差,得
所以.
不等式,化為.
當為偶數(shù)時,則.
因為數(shù)列單調(diào)遞增,所以.
所以.
當為奇數(shù)時,即,即.
因為單調(diào)遞減,所以.
所以.
綜上可得:實數(shù)的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C的中心在原點,一個焦點F(-2,0),且長軸長與短軸長的比為,
(1)求橢圓C的方程;
(2)設點M(m,0)在橢圓C的長軸上,設點P是橢圓上的任意一點,若當最小時,點P恰好落在橢圓的右頂點,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知橢圓C: (a>b>0)的離心率為,F(xiàn)為橢圓C的右焦點.A(-a,0),|AF|=3.
(I)求橢圓C的方程;
(II)設O為原點,P為橢圓上一點,AP的中點為M.直線OM與直線x=4交于點D,過O且平行于AP的直線與直線x=4交于點E.求證:∠ODF=∠OEF.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】1642年,帕斯卡發(fā)明了一種可以進行十進制加減法的機械計算機年,萊布尼茨改進了帕斯卡的計算機,但萊布尼茲認為十進制的運算在計算機上實現(xiàn)起來過于復雜,隨即提出了“二進制”數(shù)的概念之后,人們對進位制的效率問題進行了深入的研究研究方法如下:對于正整數(shù),,我們準備張不同的卡片,其中寫有數(shù)字0,1,…,的卡片各有張如果用這些卡片表示位進制數(shù),通過不同的卡片組合,這些卡片可以表示個不同的整數(shù)例如,時,我們可以表示出共個不同的整數(shù)假設卡片的總數(shù)為一個定值,那么進制的效率最高則意味著張卡片所表示的不同整數(shù)的個數(shù)最大根據(jù)上述研究方法,幾進制的效率最高?
A. 二進制 B. 三進制 C. 十進制 D. 十六進制
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) (x>0),設fn(x)為fn-1(x)的導數(shù),n∈N*.
(1)求的值;
(2)證明:對任意的n∈N*,等式都成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】恩格爾系數(shù)(記為)是指居民的食物支出占家庭消費總支出的比重.國際上常用恩格爾系數(shù)來衡量一個國家和地區(qū)人民生活水平的狀況.聯(lián)合國對消費水平的規(guī)定標準如下表:
家庭類型 | 貧窮 | 溫飽 | 小康 | 富裕 | 最富裕 |
實施精準扶貧以來,根據(jù)對某山區(qū)貧困家庭消費支出情況(單位:萬元)的抽樣調(diào)查,2018年每個家庭平均消費支出總額為2萬元,其中食物消費支出為1.2萬元預測2018年到2020年每個家庭平均消費支出總額每年的增長率約是30%,而食物消費支出平均每年增加0.2萬元,預測該山區(qū)的家庭2020年將處于( )
A.貧困水平B.溫飽水平C.小康水平D.富裕水平
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】節(jié)能減排以來,蘭州市100戶居民的月平均用電量單位:度,以分組的頻率分布直方圖如圖.
求直方圖中x的值;求月平均用電量的眾數(shù)和中位數(shù);
估計用電量落在中的概率是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】由中央電視臺綜合頻道()和唯眾傳媒聯(lián)合制作的《開講啦》是中國首檔青年電視公開課,每期節(jié)目由一位知名人士講述自己的故事,分享他們對于生活和生命的感悟,給予中國青年現(xiàn)實的討論和心靈的滋養(yǎng),討論青年們的人生問題,同時也在討論青春中國的社會問題,受到青年觀眾的喜愛,為了了解觀眾對節(jié)目的喜愛程度,電視臺隨機調(diào)查了兩個地區(qū)共100名觀眾,得到如下的列聯(lián)表:
非常滿意 | 滿意 | 合計 | |
| |||
合計 |
已知在被調(diào)查的100名觀眾中隨機抽取1名,該觀眾是地區(qū)當中“非常滿意”的觀眾的概率為0.35,且.
(1)現(xiàn)從100名觀眾中用分層抽樣的方法抽取20名進行問卷調(diào)查,則應抽取“滿意”的地區(qū)的人數(shù)各是多少?
(2)在(1)抽取的“滿意”的觀眾中,隨機選出2人進行座談,求至少有1名是地區(qū)觀眾的概率?
(3)完成上述表格,并根據(jù)表格判斷是否有90%的把握認為觀眾的滿意程度與所在地區(qū)有關(guān)系?
附:參考公式:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com