【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)求曲線與曲線兩交點(diǎn)所在直線的極坐標(biāo)方程;

(2)若直線的極坐標(biāo)方程為,直線軸的交點(diǎn)為,與曲線相交于兩點(diǎn),求的值.

【答案】(1);(2)

【解析】

(1)先將化為普通方程,可知是兩個(gè)圓,由圓心的距離判斷出兩者相交,進(jìn)而得相交直線的普通方程,再化成極坐標(biāo)方程即可;(2)先求出l的普通方程有,點(diǎn),寫(xiě)出直線l的參數(shù)方程,代入曲線,設(shè)交點(diǎn)兩點(diǎn)的參數(shù)為,,根據(jù)韋達(dá)定理可得,進(jìn)而求得的值。

(1) 曲線的普通方程為:

曲線的普通方程為:,即

由兩圓心的距離,所以兩圓相交,

所以兩方程相減可得交線為,即.

所以直線的極坐標(biāo)方程為.

(2) 直線的直角坐標(biāo)方程:,則與軸的交點(diǎn)為

直線的參數(shù)方程為,帶入曲線.

設(shè)兩點(diǎn)的參數(shù)為,

所以,所以,同號(hào).

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

1)求函數(shù)的解析式;

2)設(shè),是否存在實(shí)數(shù)a,使得當(dāng)時(shí),恒有成立,若存在,求出a的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),在區(qū)間上有最大值,最小值,設(shè)函數(shù).

1)求的值;

2)不等式上恒成立,求實(shí)數(shù)的取值范圍;

3)方程有三個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系, 曲線的參數(shù)方程為為參數(shù)) ;在以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中, 曲線的極坐標(biāo)參數(shù)方程為.

1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

2)若射線與曲線,的交點(diǎn)分別為 (異于原點(diǎn)). 當(dāng)斜率時(shí), 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】把函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變)得到函數(shù)的圖象,已知函數(shù) ,則當(dāng)函數(shù)4個(gè)零點(diǎn)時(shí)的取值集合為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,又有四個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC的三個(gè)頂點(diǎn)A(-1,0),B(1,0),C(3,2),其外接圓為⊙H.

(1)若直線l過(guò)點(diǎn)C,且被⊙H截得的弦長(zhǎng)為2,求直線l的方程;

(2)對(duì)于線段BH上的任意一點(diǎn)P,若在以C為圓心的圓上都存在不同的兩點(diǎn)M,N,使得點(diǎn)M是線段PN的中點(diǎn),求⊙C的半徑r的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)當(dāng)時(shí),記在區(qū)間的最大值為,最小值為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線的方程為

1)當(dāng)時(shí),求直線與坐標(biāo)軸圍成的三角形的面積;

2)證明:不論取何值,直線恒過(guò)第四象限.

3)當(dāng)時(shí),求直線上的動(dòng)點(diǎn)到定點(diǎn)距離之和的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案