【題目】在平面直角坐標(biāo)系, 曲線的參數(shù)方程為為參數(shù)) ;在以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中, 曲線的極坐標(biāo)參數(shù)方程為.

1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

2)若射線與曲線,的交點(diǎn)分別為 (異于原點(diǎn)). 當(dāng)斜率時(shí), 的取值范圍.

【答案】(1, ;(2.

【解析】試題分析:()首先將曲線的參數(shù)方程化為普通方程,從而求得的極坐標(biāo)方程,將曲線的極坐標(biāo)方程兩邊同乘以,由此可求得的直角坐標(biāo)方程;()首先求得射線的極坐標(biāo)方程,然后聯(lián)立曲線的極坐標(biāo)方程,從而利用參數(shù)的幾何意義求解.

試題解析:(I的極坐標(biāo)方程為………………3

的直角坐標(biāo)方程為………………5

II)設(shè)射線的傾斜角為,則射線的極坐標(biāo)方程為

,聯(lián)立,………………7

聯(lián)立,得,………………9

所以,

的取值范圍是………………10

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)的定義域?yàn)椋ī?,1),則函數(shù)f(2x﹣1)的定義域?yàn)椋?/span>
A.(﹣ ,1)
B.(﹣5,1)
C.( ,1)
D.(﹣2,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種商品原來每件售價(jià)為25元,年銷售量8萬件.
(Ⅰ)據(jù)市場調(diào)查,若價(jià)格每提高1元,銷售量將相應(yīng)減少2000件,要使銷售的總收人不低于原收入,該商品每件定價(jià)最多為多少元?
(Ⅱ)為了擴(kuò)大該商品的影響力,提高年銷售量.公司決定明年對該商品進(jìn)行全面技術(shù)革新和營銷策略改革,并提高定價(jià)到x元.公司擬投入 (x2﹣600)萬元作為技改費(fèi)用,投入50萬元作為固定宣傳費(fèi)用,投入 x萬元作為浮動宣傳費(fèi)用.試問:當(dāng)該商品明年的銷售量a至少應(yīng)達(dá)到多少萬件時(shí),才可能使明年的銷售收入不低于原收入與總投入之和?并求出此時(shí)商品的每件定價(jià).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列{an}中,a2=2,a5=128.
(1)求通項(xiàng)an;
(2)若bn=log2an , 數(shù)列{bn}的前n項(xiàng)和為Sn , 且Sn=360,求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

(Ⅰ)若方程有兩根,求的取值范圍;

(Ⅱ)在(Ⅰ)的前提下,設(shè),求證: 隨著的減小而增大;

(Ⅲ)若不等式恒成立,求證: ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an},{bn}滿足:bnan1annN*).

1)若a11bnn,求數(shù)列{an}的通項(xiàng)公式;

2)若bn1bn1bnn2),且b11b22

)記cna6n1n1),求證:數(shù)列{cn}為等差數(shù)列;

)若數(shù)列中任意一項(xiàng)的值均未在該數(shù)列中重復(fù)出現(xiàn)無數(shù)次,求首項(xiàng)a1應(yīng)滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=Asin(ωx+φ)在一個(gè)周期內(nèi)的圖象如圖,此函數(shù)的解析式為(
A.y=2sin(2x+
B.y=2sin(2x+
C.y=2sin(
D.y=2sin(2x﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知A、BC是橢圓上不同的三點(diǎn), ,C在第三象限,線段BC的中點(diǎn)在直線OA上。

1)求橢圓的標(biāo)準(zhǔn)方程;

2)求點(diǎn)C的坐標(biāo);

3)設(shè)動點(diǎn)P在橢圓上(異于點(diǎn)AB、C)且直線PB, PC分別交直線OAMN兩點(diǎn),證明為定值并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知: 、 、 是同一平面上的三個(gè)向量,其中 =(1,2).
(1)若| |=2 ,且 ,求 的坐標(biāo).
(2)若| |= ,且 +2 與2 垂直,求 的夾角θ

查看答案和解析>>

同步練習(xí)冊答案