已知函數(shù)f(x)=loga(x+1)(a>1),函數(shù)g(x)的圖象與函數(shù)(a>1)的圖象關于直線y=x對稱.
(1)求函數(shù)g(x)的解析式;
(2)若函數(shù)g(x)在區(qū)間上的值域為[loga(p+3m),loga(p+3n)],求實數(shù)p的取值范圍;
(3)設函數(shù)F(x)=af(x)-g(x)(a>1),試用列舉法表示集合M={x|F(x)∈Z}.
【答案】分析:(1)根據(jù)函數(shù)g(x)的圖象與函數(shù)(a>1)的圖象關于直線y=x對稱可知兩函數(shù)互為反函數(shù),從而求出函數(shù)g(x)的解析式;
(2)根據(jù)函數(shù)的單調性建立等式關系,x2-3x+3=p+3x在(,+∞)有兩個不等的根,從而求出p的范圍;
(3)先求出函數(shù)F(x)的值域,然后根據(jù)值域中的整數(shù)來求相應的x的值,即可求出集合M.
解答:解:(1)∵函數(shù)g(x)的圖象與函數(shù)(a>1)的圖象關于直線y=x對稱
∴函數(shù)g(x)與函數(shù)(a>1)互為反函數(shù)
則g(x)=loga(x2-3x+3)(x>
(2)∵a>1,m>
∴函數(shù)g(x)在區(qū)間上單調遞增
∵函數(shù)g(x)在區(qū)間上的值域為[loga(p+3m),loga(p+3n)],
∴g(m)=loga(m2-3m+3)=loga(p+3m),
g(n)=loga(n2-3n+3)=loga(p+3n),
即x2-3x+3=p+3x在(,+∞)有兩個不等的根
∴-6<p<
(3)f(x)-g(x)=loga(x+1)-loga(x2-3x+3)=
∴F(x)=af(x)-g(x)=(x>
而函數(shù)F(x)的值域為(0,]
∵F(x)∈Z
∴F(x)=1或2或3,此時x=2+、2
∴M={x|F(x)∈Z}={2+,2}
點評:本題主要考查了函數(shù)解析式的求解,以及函數(shù)的值域和列舉法,同時考查了分析問題,解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求a的值;
(2)當a=1時,若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對于函數(shù)f(x)圖象上的不同兩點A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點M(x0,y0)(其中x0∈(x1,x2))使得點M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當x0=
x1+x2
2
時,又稱直線AB存在“中值伴侶切線”.試問:當x≥e時,對于函數(shù)f(x)圖象上不同兩點A、B,直線AB是否存在“中值伴侶切線”?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項和為Sn,則S2012的值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點;
(Ⅱ)若直線l過點(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實數(shù)a的不同取值,寫出該函數(shù)的單調增區(qū)間;
(2)已知當x>0時,函數(shù)在(0,
6
)上單調遞減,在(
6
,+∞)上單調遞增,求a的值并寫出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案