【題目】古希臘畢達(dá)哥拉斯學(xué)派研究了“多邊形數(shù)”,人們把多邊形數(shù)推廣到空間,研究了“四面體數(shù)”,下圖是第一至第四個(gè)四面體數(shù),(已知

觀察上圖,由此得出第5個(gè)四面體數(shù)為______(用數(shù)字作答);第個(gè)四面體數(shù)為______.

【答案】35

【解析】

通過(guò)觀察圖形,先將圖形的規(guī)律轉(zhuǎn)化為數(shù)字規(guī)律,即為找到如1,4,10,20,……的數(shù)列的第項(xiàng),通過(guò)觀察發(fā)現(xiàn),相鄰的數(shù)字差分別是3,6,10,……,即第項(xiàng)應(yīng)為,那么就把問(wèn)題轉(zhuǎn)化為求數(shù)列的和,1,3,6,10,……,根據(jù)這些數(shù)字可以發(fā)現(xiàn),, ,……, ,利用累加法可以得到,再利用題目所給已知,求出前項(xiàng)和,即為第個(gè)四面體數(shù),當(dāng)時(shí),即為第5個(gè)四面體數(shù).

由題,

第一個(gè)四面體數(shù)為1

第二個(gè)四面體數(shù)為

第三個(gè)四面體數(shù)為;

第四個(gè)四面體數(shù)為

……

由此可歸納,個(gè)四面體數(shù)為

即為

設(shè)該式中的每個(gè)數(shù)從左至右的排列為數(shù)列,為:1,3,6,10,……

得到遞推關(guān)系為,,,,相加后得

,故數(shù)列的和

當(dāng)時(shí),

故答案為:35;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)求函數(shù)的最小正周期和單調(diào)遞減區(qū)間;

(2)將函數(shù)的圖象向右平移個(gè)單位后,再將所得圖象的縱坐標(biāo)不變,橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,得到的函數(shù)的圖象關(guān)于軸對(duì)稱,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),且曲線在點(diǎn)處的切線與直線垂直.

(1)求函數(shù)的單調(diào)區(qū)間;

(2)求證:時(shí),.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于函數(shù),有下列四個(gè)命題:①的值域是;②是奇函數(shù);③上單調(diào)遞增;④方程總有四個(gè)不同的解;其中正確的是( )

A.①②B.②③C.②④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】紙是生活中最常用的紙規(guī)格.系列的紙張規(guī)格特色在于:①、、…、,所有尺寸的紙張長(zhǎng)寬比都相同.②在系列紙中,前一個(gè)序號(hào)的紙張以兩條長(zhǎng)邊中點(diǎn)連線為折線對(duì)折裁剪分開(kāi)后,可以得到兩張后面序號(hào)大小的紙,比如1張紙對(duì)裁后可以的到2張紙,1張紙對(duì)裁可以得到2張紙,以此類推.這是因?yàn)?/span>系列的紙張長(zhǎng)寬比為這一特殊比例,所以具備這種特性.已知紙規(guī)格為84.1厘米×118.9厘米().那么紙的長(zhǎng)度為( )

A.14.8厘米B.21厘米C.25.1厘米D.29.7厘米

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)準(zhǔn)備招聘一批大學(xué)生到本單位就業(yè),但在簽約前要對(duì)他們的某項(xiàng)專業(yè)技能進(jìn)行測(cè)試.在待測(cè)試的某一個(gè)小組中有男、女生共10人(其中女生人數(shù)多于男生人數(shù)),如果從中隨機(jī)選2人參加測(cè)試,其中恰為一男一女的概率為;()求該小組中女生的人數(shù);()假設(shè)此項(xiàng)專業(yè)技能測(cè)試對(duì)該小組的學(xué)生而言,每個(gè)女生通過(guò)的概率均為,每個(gè)男生通過(guò)的概率均為;現(xiàn)對(duì)該小組中男生甲、男生乙和女生丙3個(gè)人進(jìn)行測(cè)試,記這3人中通過(guò)測(cè)試的人數(shù)為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,長(zhǎng)半軸長(zhǎng)與短半軸長(zhǎng)的比值為.

1)求橢圓的方程;

2)設(shè)經(jīng)過(guò)點(diǎn)的直線與橢圓相交于不同的兩點(diǎn),.若點(diǎn)在以線段為直徑的圓上,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在梯形中,,,的中點(diǎn),的交點(diǎn),將沿翻折到圖的位置,得到四棱錐

1)求證:

2)當(dāng),時(shí),求到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),的導(dǎo)函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若函數(shù)上存在最大值0,求函數(shù)上的最大值;

(3)求證:當(dāng)時(shí),.

查看答案和解析>>

同步練習(xí)冊(cè)答案