橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的內(nèi)接等腰△ABC的頂點(diǎn)A的坐標(biāo)為(0,b),其底邊BC上的高在y軸上,若△ABC的面積不超過
3
2
b2
,則橢圓離心率的取值范圍為( 。
A、(0,
1
2
]
B、[
1
2
,1)
C、(0,
3
2
]
D、[
3
2
,1)
分析:首先設(shè)點(diǎn)B(acosx,bsintx) C(-acosx,bsinx),進(jìn)而求得底邊、高、面積得出恒有(1-sinx)cosx≤
3b
2a
,再根據(jù)c2=a2-b2,就能得到答案.
解答:解:∵△ABC為等腰三角形.
∴可設(shè)點(diǎn)B(acosx,bsinx) C(-acosx,bsinx).其中-
π
2
<x<
π
2

此時易知,該三角形底邊BC=2acosx,高=b(1-sinx)
∴S=ab(1-sinx)cosx
由題設(shè)可得ab(1-sinx)cosx≤
3
2
b2

∴恒有(1-sinx)cosx≤
3b
2a

3
3
4
3b
2a

整理可得,
3
a≤2b
兩邊平方,3a2≤4b2=4(a2-c2
∴4c2≤a2
c
a
1
2

故選A.
點(diǎn)評:本題考查了橢圓的簡單性質(zhì),本題采用參數(shù)方法使問題變得簡單化,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b
=1(a>b>0)
的左、右焦點(diǎn)分別為F1、F2,離心率e=
2
2
,右準(zhǔn)線方程為x=2.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)F1的直線l與該橢圓交于M、N兩點(diǎn),且|
F2M
+
F2N
|=
2
26
3
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,橢圓
x2
a2
+
y2
b 
=1(a>b>0)與過點(diǎn)A(2,0)B(0,1)的直線有且只有一個公共點(diǎn)T,且橢圓的離心率e=
3
2

(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)F1、F2分別為橢圓的左、右焦點(diǎn),求證:|AT|2=
1
2
|AF1||AF2|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,橢圓
x2
a2
+
y2
b 
=1(a>b>0)與過點(diǎn)A(2,0)B(0,1)的直線有且只有一個公共點(diǎn)T,且橢圓的離心率e=
3
2

(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)F1、F2分別為橢圓的左、右焦點(diǎn),M為線段AF1的中點(diǎn),求證:∠ATM=∠AF1T.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè) A(x1,y1)、B(x2,y2)是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)上的兩點(diǎn),O為坐標(biāo)原點(diǎn),向量
m
=(
x1
a
,
y1
b
),
n
=(
x2
a
y2
b
)
m
n
=0

(1)若A點(diǎn)坐標(biāo)為(a,0),求點(diǎn)B的坐標(biāo);
(2)設(shè)
OM
=cosθ•
OA
+sinθ•
OB
,證明點(diǎn)M在橢圓上;
(3)若點(diǎn)P、Q為橢圓 上的兩點(diǎn),且
PQ
OB
,試問:線段PQ能否被直線OA平分?若能平分,請加以證明;若不能平分,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:四川 題型:解答題

已知橢圓
x2
a2
+
y2
b
=1(a>b>0)
的左、右焦點(diǎn)分別為F1、F2,離心率e=
2
2
,右準(zhǔn)線方程為x=2.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)F1的直線l與該橢圓交于M、N兩點(diǎn),且|
F2M
+
F2N
|=
2
26
3
,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案