數(shù)列成等差數(shù)列,則分別為       ,由此猜想出=        
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
已知首項不為零的數(shù)列的前項和為,若對任意的,,都有
(Ⅰ)判斷數(shù)列是否為等差數(shù)列,并證明你的結(jié)論;
(Ⅱ)若數(shù)列的第是數(shù)列的第,且,,求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

ABC的三個內(nèi)角A、BC的對邊的長分別為a、b、c,有下列兩個條件:(1)a、b、c成等差數(shù)列;(2)a、b、c成等比數(shù)列,現(xiàn)給出三個結(jié)論:(1);(2);(3)。
請你選取給定的兩個條件中的一個條件為條件,三個結(jié)論中的兩個為結(jié)論,組建一個你認(rèn)為正確的命題,并證明之。
(I)組建的命題為:已知_______________________________________________
求證:①__________________________________________
②__________________________________________
  (II)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分15分)已知點(1,)是函數(shù))的圖象上一點,等比數(shù)列的前n項和為,數(shù)列的首項為c,且前n項和滿足
=+(n2).
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)若數(shù)列{前n項和為,問>的最小正整數(shù)n是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分18分;第(1)小題5分,第(2)小題5分,第(3)小題8分)
設(shè)數(shù)列是等差數(shù)列,且公差為,若數(shù)列中任意(不同)兩項之和仍是該數(shù)列中的一項,則稱該數(shù)列是“封閉數(shù)列”.
(1)若,求證:該數(shù)列是“封閉數(shù)列”;
(2)試判斷數(shù)列是否是“封閉數(shù)列”,為什么?
(3)設(shè)是數(shù)列的前項和,若公差,試問:是否存在這樣的“封閉數(shù)列”,使;若存在,求的通項公式,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),數(shù)列通項公式

數(shù)列滿足,,設(shè)
(1)證明,并求數(shù)列項和
(2)若(1)中的滿足對任意不小于2的正整數(shù), 恒成立,求最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在正整數(shù)數(shù)列中,由1開始依次按如下規(guī)則將某些數(shù)染成紅色.先染1,再染2個偶數(shù)2、4;再染4后面最鄰近的3個連續(xù)奇數(shù)5、7、9;再染9后面最鄰近的4個連續(xù)偶數(shù)10、12、14、16;再染此后最鄰近的5個連續(xù)奇數(shù)17、19、21、23、25.按此規(guī)則一直染下去,得到一紅色子數(shù)列1,2,4,5,7,9,10,12,14,16,17,….則在這個紅色子數(shù)列中,由1開始的第2003個數(shù)是(    )
A.3844B.3943C.3945D.4006

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
在數(shù)列中,已知
(Ⅰ)求證:數(shù)是等比數(shù)列;
(Ⅱ)求數(shù)列的通項公式;
(Ⅲ)求數(shù)列的前項和
解:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

數(shù)列中,已知,,若對任意正整數(shù),有,且,則該數(shù)列的前2010項和
(   )
A..B..C..D..

查看答案和解析>>

同步練習(xí)冊答案