【題目】已知函數(shù),實數(shù)是常數(shù).

(Ⅰ)若=2,函數(shù)圖像上是否存在兩條互相垂直的切線,并說明理由.

(Ⅱ)若上有零點,求實數(shù)的取值范圍.

【答案】(1)函數(shù)圖像上不存在兩條互相垂直的直線(2)的取值范圍是.

【解析】試題分析】(1)借助導(dǎo)數(shù)的幾何意義,建立不等式進(jìn)行分析推證;(2)先將問題進(jìn)行等價轉(zhuǎn)化與化歸,再構(gòu)造方程進(jìn)行分析探求

(Ⅰ) , ,

所以,對于任意,均有

故函數(shù)圖像上不存在兩條互相垂直的直線

(Ⅱ)解:因為上有零點,

所以在區(qū)間上的最小值小于等于0.

因為, 令,得.

(1)當(dāng)時,即時,

因為成立,所以上單調(diào)遞增,

此時上的最小值為

所以,

解得,所以此種情形不成立,

(2)當(dāng),即時,

①若, 則成立,所以上單調(diào)遞增,

此時上的最小值為所以

解得,所以

②若,

,則成立, 成立.

上單調(diào)遞減,在上單調(diào)遞增,此時上的最小值為所以有,解得

時,注意到,而,

此時結(jié)論成立.

綜上, 的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2mx+m2+4m﹣2.
(1)若函數(shù)f(x)在區(qū)間[0,1]上是單調(diào)遞減函數(shù),求實數(shù)m的取值范圍;
(2)若函數(shù)f(x)在區(qū)間[0,1]上有最小值﹣3,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位用2160萬元購得一塊空地,計劃在該地塊上建造一棟至少10層,每層2000平方米的樓房.經(jīng)測算,如果將樓房建為x(x≥10)層,則每平方米的平均建筑費用為560+48x(單位:元).
(1)寫出樓房平均綜合費用y關(guān)于建造層數(shù)x的函數(shù)關(guān)系式;
(2)該樓房應(yīng)建造多少層時,可使樓房每平方米的平均綜合費用最少?最少值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值,這就是著名的“徽率”,如圖是利用劉徽的“割圓術(shù)”思想設(shè)計的一個程序框圖,則輸出的值為 ( )

(參考數(shù)據(jù):

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,側(cè)棱PD⊥底面ABCD,PD=DC=2,E是PC的中點,作EF⊥PB交PB于點F.
(1)證明:PA∥平面EDB;
(2)證明:PB⊥平面EFD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修44:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,圓C的參數(shù)方程為,(t為參數(shù)),在以原點O為極點,x軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為A,B兩點的極坐標(biāo)分別為.

()求圓C的普通方程和直線的直角坐標(biāo)方程;

()P是圓C上任一點,求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個的矩形),被截取一角(即),, ,平面平面, .

(1)證明:

(2)求二面角的大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面α過正方體ABCD﹣A1B1C1D1的頂點A,α∥平面CB1D1 , α∩平面ABCD=m,α∩平面AB B1A1=n,則m,n所成角的正弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:(x﹣1)2+y2=9內(nèi)有一點P(2,2),過點P作直線l交圓C于A、B兩點.
(1)當(dāng)l經(jīng)過圓心C時,求直線l的方程; (寫一般式)
(2)當(dāng)直線l的傾斜角為45°時,求弦AB的長.

查看答案和解析>>

同步練習(xí)冊答案