上海某化學(xué)試劑廠以x千克/小時的速度生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求),為了保證產(chǎn)品的質(zhì)量,需要一邊生產(chǎn)一邊運輸,這樣按照目前的市場價格,每小時可獲得利潤是元.
(1)要使生產(chǎn)運輸該產(chǎn)品2小時獲得的利潤不低于3000元,求x的取值范圍;
(2)要使生產(chǎn)運輸900千克該產(chǎn)品獲得的利潤最大,問:該工廠應(yīng)該選取何種生產(chǎn)速度?并求最大利潤.

(1);(2)以每小時6千克的速度能獲得最大利潤,最大利潤為457500元.

解析試題分析:(1)函數(shù)應(yīng)用題是高考的?純(nèi)容,一般都是根據(jù)題意列出函數(shù)式,不等式,方程,而其關(guān)系式大多在題目里都有提示,我們只要按照題意列出相應(yīng)式子,然后根據(jù)對應(yīng)的知識解題即可,如本題就是列出不等式,這個不等式的解就是所求范圍.(2)求利潤最大問題,一般是列出函數(shù)式,再借助函數(shù)的知識解決,本題就是把利潤表示為生產(chǎn)速度的函數(shù),這個函數(shù)可以看作為關(guān)于的二次函數(shù),從而可以利用二次函數(shù)的知識得解.
試題解析:(1)根據(jù)題意,4分
,可解得                     6分
因此,所求的取值范圍是                     7分
(2)設(shè)利潤為元,則 11分
時,元.                           13分
因此該工廠應(yīng)該以每小時6千克的速度生產(chǎn)才能獲得最大利潤,最大利潤為457500元.
14分
考點:(1)列解不等式;(2)函數(shù)的最值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=的圖象過原點,且關(guān)于點(-1,2)成中心對稱.
(1)求函數(shù)f(x)的解析式;
(2)若數(shù)列{an}滿足a1=2,an+1f(an),試證明數(shù)列為等比數(shù)列,并求出數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)計算.
(2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某商場經(jīng)營一批進(jìn)價是30元/件的商品,在市場試銷中發(fā)現(xiàn),此商品銷售價元與日銷售量件之間有如下關(guān)系:

x
 
45
 
50
 
y
 
27
 
12
 
(I)確定的一個一次函數(shù)關(guān)系式;
(Ⅱ)若日銷售利潤為P元,根據(jù)(I)中關(guān)系寫出P關(guān)于的函數(shù)關(guān)系,并指出當(dāng)銷售單價為多少元時,才能獲得最大的日銷售利潤?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某地方政府準(zhǔn)備在一塊面積足夠大的荒地上建一如圖所示的一個矩形綜合性休閑廣場,其總面積為3000平方米,其中場地四周(陰影部分)為通道,通道寬度均為2米,中間的三個矩形區(qū)域?qū)佋O(shè)塑膠地面作為運動場地(其中兩個小場地形狀相同),塑膠運動場地占地面積為平方米.

(1)分別寫出用表示和用表示的函數(shù)關(guān)系式(寫出函數(shù)定義域);
(2)怎樣設(shè)計能使S取得最大值,最大值為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某種海洋生物身體的長度(單位:米)與生長年限t(單位:年)
滿足如下的函數(shù)關(guān)系:.(設(shè)該生物出生時t=0)
(1)需經(jīng)過多少時間,該生物的身長超過8米;
(2)該生物出生后第3年和第4年各長了多少米?并據(jù)此判斷,這2年中哪一年長得更快.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)是偶函數(shù)。
(1)求的值;
(2)設(shè)函數(shù),其中實數(shù)。若函數(shù)的圖象有且只有一個交點,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),h(x)=2alnx,.
(1)當(dāng)a∈R時,討論函數(shù)的單調(diào)性;
(2)是否存在實數(shù)a,對任意的,且,都有
恒成立,若存在,求出a的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,是一個矩形花壇,其中AB=4米,AD=3米.現(xiàn)將矩形花壇擴建成一個更大的矩形花園,要求:B在上,D在上,對角線過C點,且矩形的面積小于64平方米.

(Ⅰ)設(shè)長為米,矩形的面積為平方米,試用解析式將表示成的函數(shù),并寫出該函數(shù)的定義域;
(Ⅱ)當(dāng)的長度是多少時,矩形的面積最小?并求最小面積.

查看答案和解析>>

同步練習(xí)冊答案