已知函數(shù)f(x)=的圖象過原點(diǎn),且關(guān)于點(diǎn)(-1,2)成中心對稱.
(1)求函數(shù)f(x)的解析式;
(2)若數(shù)列{an}滿足a1=2,an+1f(an),試證明數(shù)列為等比數(shù)列,并求出數(shù)列{an}的通項(xiàng)公式.

(1)f(x)=(2)an

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

作函數(shù)的y= [3(x+1)]圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=-x+log2.
(1)求f()+f(-)的值.
(2)當(dāng)x∈(-a,a],其中a∈(0,1),a是常數(shù)時(shí),函數(shù)f(x)是否存在最小值?若存在,求出f(x)的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如果對任意實(shí)數(shù)x,y,都有f(x+y)=f(x)·f(y),且f(1)=2,
(1)求f(2),f(3),f(4)的值.
(2)求+++…+++的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某興趣小組要測量電視塔AE的高度H(單位:m).如示意圖,垂直放置的標(biāo)桿BC的高度h=4 m,仰角∠ABEα,∠ADEβ.
 
(1)該小組已測得一組α,β的值,算出了tan α=1.24,tan β=1.20,請據(jù)此算出H的值;
(2)該小組分析若干測得的數(shù)據(jù)后,認(rèn)為適當(dāng)調(diào)整標(biāo)桿到電視塔的距離d(單位:m),使αβ之差較大,可以提高測量精度.若電視塔的實(shí)際高度為125 m,試問d為多少時(shí),αβ最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

經(jīng)市場調(diào)查,某旅游城市在過去的一個(gè)月內(nèi)(以30天計(jì)),旅游人數(shù)f(t)(萬人)與時(shí)間t(天)的函數(shù)關(guān)系近似滿足f(t)=4+,人均消費(fèi)g(t)(元)與時(shí)間t(天)的函數(shù)關(guān)系近似滿足g(t)=115-|t-15|.
(1)求該城市的旅游日收益w(t)(萬元)與時(shí)間t(1≤t≤30,t∈N*)的函數(shù)關(guān)系式;
(2)求該城市旅游日收益的最小值(萬元).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=x∈[-1,1],函數(shù)g(x)=[f(x)]2-2af(x)+3的最小值為h(a).
(1)求h(a);
(2)是否存在實(shí)數(shù)m、n同時(shí)滿足下列條件:
mn>3;
②當(dāng)h(a)的定義域?yàn)閇n,m]時(shí),值域?yàn)閇n2,m2]?若存在,求出m、n的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若函數(shù)f(x)對任意的實(shí)數(shù)x1,x2D,均有|f(x2)-f(x1)|≤|x2x1|,則稱函數(shù)f(x)是區(qū)間D上的“平緩函數(shù)”.
(1)判斷g(x)=sin xh(x)=x2x是不是實(shí)數(shù)集R上的“平緩函數(shù)”,并說明理由;
(2)若數(shù)列{xn}對所有的正整數(shù)n都有|xn+1xn|≤,設(shè)yn=sin xn,求證:|yn+1y1|<.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

上海某化學(xué)試劑廠以x千克/小時(shí)的速度生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求),為了保證產(chǎn)品的質(zhì)量,需要一邊生產(chǎn)一邊運(yùn)輸,這樣按照目前的市場價(jià)格,每小時(shí)可獲得利潤是元.
(1)要使生產(chǎn)運(yùn)輸該產(chǎn)品2小時(shí)獲得的利潤不低于3000元,求x的取值范圍;
(2)要使生產(chǎn)運(yùn)輸900千克該產(chǎn)品獲得的利潤最大,問:該工廠應(yīng)該選取何種生產(chǎn)速度?并求最大利潤.

查看答案和解析>>

同步練習(xí)冊答案