若一系列函數(shù)的解析式和值域相同,但其定義域不同,則稱這些函數(shù)為“同族函數(shù)”,例如函數(shù)y=x2,x∈[1,2]與函數(shù)y=x2,x∈[-2,-1]即為“同族函數(shù)”.請你找出下面哪個函數(shù)解析式也能夠被用來構(gòu)造“同族函數(shù)”的是( 。
A、y=|x-1|B、y=2xC、y=2xD、y=log2x
分析:根據(jù)“同族函數(shù)”的定義可知,能夠被用來構(gòu)造“同族函數(shù)”的函數(shù)必須是軸對稱函數(shù),然后分別判斷四個函數(shù)的對稱性即可.
解答:解:根據(jù)“同族函數(shù)”的定義可知,若一系列函數(shù)的解析式和值域相同,但其定義域不同,則能夠被用來構(gòu)造“同族函數(shù)”的函數(shù)必須是軸對稱函數(shù).
A.函數(shù)y=|x-1|關(guān)于x=1對稱,是軸對稱函數(shù),滿足條件.
B.函數(shù)y=2x單調(diào)遞增,不是軸對稱函數(shù),不滿足條件.
C.函數(shù)y=2x單調(diào)遞增,不是軸對稱函數(shù),不滿足條件.
D.函數(shù)y=log2x單調(diào)遞增,不是軸對稱函數(shù),不滿足條件.
故選:A.
點(diǎn)評:本題主要考查與函數(shù)有關(guān)的定義,正確理解“同族函數(shù)”的意義是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

150、若一系列函數(shù)的解析式和值域相同,但定義域互不相同,則稱這些函數(shù)為“同族函數(shù)”.例如函數(shù)y=x2,x∈[1,2]與y=x2,x∈[-2,-1]即為“同族函數(shù)”、下面6個函數(shù):①y=tanx;②y=cosx;③y=x3;④y=2x;⑤y=lgx;⑥y=x4.其中能夠被用來構(gòu)造“同族函數(shù)”的有
①②⑥

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若一系列函數(shù)的解析式相同,值域相同,但其定義域不同,則稱這一系列函數(shù)為“同族函數(shù)”,試問解析式為y=x2,值域?yàn)閧1,2}的“同族函數(shù)”共有
 
個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若一系列函數(shù)的解析式和值域相同,但其定義域不同,則稱這些函數(shù)為“同效函數(shù)”,例如函數(shù)y=x2,x∈[1,2]與函數(shù)y=x2,x∈[-2,-1]即為“同效函數(shù)”.請你找出下面函數(shù)解析式中能夠被用來構(gòu)造“同效函數(shù)”的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若一系列函數(shù)的解析式相同,值域相同,但定義域不同,則稱這些函數(shù)為“孿生函數(shù)”,那么函數(shù)解析式為y=2x2-1,值域?yàn)閧1,7}的“孿生函數(shù)”共有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•湖北模擬)若一系列函數(shù)的解析式相同,值域相同,但定義域不同,則稱這些函數(shù)為“孿生函數(shù)”,例如解析式為y=2x2+1,值域?yàn)閧9}的“孿生函數(shù)”三個:
(1)y=2x2+1,x∈{-2};(2)y=2x2+1,x∈{2};(3)y=2x2+1,x∈{-2,2}.
那么函數(shù)解析式為y=2x2+1,值域?yàn)閧1,5}的“孿生函數(shù)”共有( 。

查看答案和解析>>

同步練習(xí)冊答案