設(shè)x,y滿足約束條件則目標函數(shù)z=x+y的最大值是( )
A.3
B.4
C.6
D.8
【答案】分析:本題主要考查線性規(guī)劃的基本知識,先畫出約束條件的可行域,再求出可行域中各角點的坐標,將各點坐標代入目標函數(shù)的解析式,分析后易得目標函數(shù)Z=x+y的最大值.
解答:解:不等式表示的區(qū)域是如下圖示的三角形,
3個頂點是(3,0),(6,0),(2,2),
目標函數(shù)z=x+y在(6,0)取最大值6.
故選C.
點評:線性規(guī)劃問題首先作出可行域,若為封閉區(qū)域(即幾條直線圍成的區(qū)域)則區(qū)域端點的值是目標函數(shù)取得最大或最小值,求出直線交點坐標代入目標函數(shù)即可求出最大值.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)x,y滿足約束條件
x+y≤1
y≤x
y≥-2
,則z=3x+y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)x,y滿足約束條件
3x-y-6≤0
x-y+2≥0
x≥0,y≥0
,若目標函數(shù)z=ax+by(a>0,b>0)的最大值為12,則
3
a
+
2
b
的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•奉賢區(qū)二模)(文)設(shè)x,y滿足約束條件
x≥0
y≥0
x
3a
+
y
4a
≤1
z=
y+1
x+1
的最小值為
1
4
,則a的值
1
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)x,y滿足約束條件
x-y+2≥0
4x-y-4≤0
x≥0
y≥0
,若目標函數(shù)z=ax+by(a>0,b>0)的最大值為6,則w=2ab的最大值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)x,y滿足約束條件
x+y≥0
x-y+3≥0
x≤3
,則z=2x-y的最大值為
 

查看答案和解析>>

同步練習冊答案