設(shè)x,y滿(mǎn)足約束條件
x+y≤1
y≤x
y≥-2
,則z=3x+y的最大值為
 
分析:先根據(jù)約束條件畫(huà)出可行域,再利用幾何意義求最值,z=2x+y表示直線(xiàn)在y軸上的截距,只需求出可行域直線(xiàn)在y軸上的截距最大值即可.
解答:精英家教網(wǎng)解:作圖
易知可行域?yàn)橐粋(gè)三角形,
當(dāng)直線(xiàn)z=3x+y過(guò)點(diǎn)A(3,-2)時(shí),z最大是7,
故答案為:7.
點(diǎn)評(píng):本小題是考查線(xiàn)性規(guī)劃問(wèn)題,本題主要考查了簡(jiǎn)單的線(xiàn)性規(guī)劃,以及利用幾何意義求最值,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y滿(mǎn)足約束條件
3x-y-6≤0
x-y+2≥0
x≥0,y≥0
,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為12,則
3
a
+
2
b
的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•奉賢區(qū)二模)(文)設(shè)x,y滿(mǎn)足約束條件
x≥0
y≥0
x
3a
+
y
4a
≤1
z=
y+1
x+1
的最小值為
1
4
,則a的值
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y滿(mǎn)足約束條件
x-y+2≥0
4x-y-4≤0
x≥0
y≥0
,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為6,則w=2ab的最大值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y滿(mǎn)足約束條件
x+y≥0
x-y+3≥0
x≤3
,則z=2x-y的最大值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案