已知拋物線
與橢圓
有公共焦點
,且橢圓過點
.
(1)求橢圓方程;
(2)點
、
是橢圓的上下頂點,點
為右頂點,記過點
、
、
的圓為⊙
,過點
作⊙
的切線
,求直線
的方程;
(3)過橢圓的上頂點作互相垂直的兩條直線分別交橢圓于另外一點
、
,試問直線
是否經(jīng)過定點,若是,求出定點坐標;若不是,說明理由.
試題分析:(1)由題目給出的條件直接求解
的值,則可求出橢圓方程;(2)當所求直線斜率不存在時,其方程為
,符合題意;當直線斜率存在時,可設其斜率為
,寫出直線的點斜式方程,因為直線與圓相切,所以根據(jù)圓心到直線的距離等于圓的半徑可直接求得直線的斜率,從而得到方程;(3)由題意可知,兩直線的斜率都存在,設AP:
,代入橢圓的方程從而求出點
的坐標,同理再求出點
的坐標,從而可求出直線
的方程,由方程可知當
時,
恒成立,所以直線恒過定點
.
試題解析:
(1)
,則c=2, 又
,得
∴所求橢圓方程為
.
(2)M
,⊙M:
,直線l斜率不存在時,
,
直線l斜率存在時,設為
,
∴
,解得
,
∴直線l為
或
.
(3)顯然,兩直線斜率存在, 設AP:
,
代入橢圓方程,得
,解得點
,
同理得
,直線PQ:
,
令x=0,得
,∴直線PQ過定點
.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知拋物線的頂點在坐標原點,焦點為
,點
是點
關于
軸的對稱點,過點
的直線交拋物線于
兩點。
(Ⅰ)試問在
軸上是否存在不同于點
的一點
,使得
與
軸所在的直線所成的銳角相等,若存在,求出定點
的坐標,若不存在說明理由。
(Ⅱ)若
的面積為
,求向量
的夾角;
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,直線y=kx+b與橢圓
交于A、B兩點,記△AOB的面積為S.
(1)求在k=0,0<b<1的條件下,S的最大值;
(2)當|AB|=2,S=1時,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓中心在原點,焦點在
軸上,焦距為2,離心率為
(1)求橢圓的方程;
(2)設直線
經(jīng)過點
(0,1),且與橢圓交于
兩點,若
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的中心在坐標原點,焦點在
軸上,橢圓
上的點到焦點距離的最大值為
,最小值為
.
(Ⅰ)求橢圓方程;
(Ⅱ)若直線
與橢圓交于不同的兩點
、
,且線段
的垂直平分線過定點
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設雙曲線
以橢圓
的兩個焦點為焦點,且雙曲線
的一條漸近線是
,
(1)求雙曲線
的方程;
(2)若直線
與雙曲線
交于不同兩點
,且
都在以
為圓心的圓上,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
是以原點
為中心,焦點在
軸上的等軸雙曲線在第一象限部分,曲線
在點P處的切線分別交該雙曲線的兩條漸近線于
兩點,則( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知橢圓
的離心率為
,過右焦點
且斜率為
的直線與
相交于
兩點.若
,則
( )
A.1 | B. | C. | D.2 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
橢圓的一個頂點與兩個焦點構成等邊三角形,則橢圓的離心率( )
查看答案和解析>>