已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,橢圓上的點(diǎn)到焦點(diǎn)距離的最大值為,最小值為
(Ⅰ)求橢圓方程;
(Ⅱ)若直線與橢圓交于不同的兩點(diǎn),且線段的垂直平分線過(guò)定點(diǎn),求的取值范圍.
(Ⅰ)(Ⅱ)

試題分析:(Ⅰ)本小題通過(guò)告訴兩個(gè)條件.到焦點(diǎn)最長(zhǎng)和最短的焦半徑,即可求得所求的橢圓方程.本小題的已知條件要記清不要混淆.(Ⅱ)本小題是直線與橢圓的關(guān)系,常用的方法就是聯(lián)立方程,判別式大于零,韋達(dá)定理.再根據(jù)弦MN的中垂線恒過(guò)一點(diǎn).根據(jù)中點(diǎn),定點(diǎn),斜率其中的兩個(gè)條件所以可以寫出垂直平分線的直線方程.再將另一個(gè)代入就可得到一個(gè)關(guān)于k,m的等式.再結(jié)合判別式得到不等式即可得到k的取值范圍.本題的運(yùn)算量較大些.要認(rèn)真做到“步步為贏”.
試題解析:(I)由題意設(shè)橢圓的標(biāo)準(zhǔn)方程為
,
       4分
(Ⅱ)設(shè)

消去并整理得 6分
∵直線與橢圓有兩個(gè)交點(diǎn)
,即 8分

中點(diǎn)的坐標(biāo)為 10分
設(shè)的垂直平分線方程:



 12分
將上式代入得


的取值范圍為 14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(13分) 已知橢圓C的中心在原點(diǎn),離心率等于,它的一個(gè)短軸端點(diǎn)點(diǎn)恰好是拋物線 的焦點(diǎn)。

(1)求橢圓C的方程;
(2)已知P(2,3)、Q(2,-3)是橢圓上的兩點(diǎn),A,B是橢圓上位于直線PQ兩側(cè)的動(dòng)點(diǎn),
①若直線AB的斜率為,求四邊形APBQ面積的最大值;
②當(dāng)A、B運(yùn)動(dòng)時(shí),滿足,試問直線AB的斜率是否為定值,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知曲線上任意一點(diǎn)到直線的距離是它到點(diǎn)距離的倍;曲線是以原點(diǎn)為頂點(diǎn),為焦點(diǎn)的拋物線.
(Ⅰ)求,的方程;
(Ⅱ)過(guò)作兩條互相垂直的直線,其中相交于點(diǎn),相交于點(diǎn),求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線與橢圓有公共焦點(diǎn),且橢圓過(guò)點(diǎn).
(1)求橢圓方程;
(2)點(diǎn)、是橢圓的上下頂點(diǎn),點(diǎn)為右頂點(diǎn),記過(guò)點(diǎn)、、的圓為⊙,過(guò)點(diǎn)作⊙ 的切線,求直線的方程;
(3)過(guò)橢圓的上頂點(diǎn)作互相垂直的兩條直線分別交橢圓于另外一點(diǎn)、,試問直線是否經(jīng)過(guò)定點(diǎn),若是,求出定點(diǎn)坐標(biāo);若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,點(diǎn)B與點(diǎn)A(-1,1)關(guān)于原點(diǎn)O對(duì)稱,P是動(dòng)點(diǎn),且直線AP與BP的斜率之積等于.
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)設(shè)直線AP和BP分別與直線x=3交于點(diǎn)M,N,問:是否存在點(diǎn)P使得△PAB與△PMN的面積相等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知橢圓的左焦點(diǎn)為,且橢圓的離心率.
(1)求橢圓的方程;
(2)設(shè)橢圓的上下頂點(diǎn)分別為,是橢圓上異于的任一點(diǎn),直線分別交軸于點(diǎn),證明:為定值,并求出該定值;
(3)在橢圓上,是否存在點(diǎn),使得直線與圓相交于不同的兩點(diǎn),且的面積最大?若存在,求出點(diǎn)的坐標(biāo)及對(duì)應(yīng)的的面積;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓過(guò)點(diǎn),離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)點(diǎn)且斜率為)的直線與橢圓相交于兩點(diǎn),直線、分別交直線 于、兩點(diǎn),線段的中點(diǎn)為.記直線的斜率為,求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知兩定點(diǎn),如果動(dòng)點(diǎn)滿足,則點(diǎn)的軌跡所包圍的圖形的面積等于(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

橢圓內(nèi)的一點(diǎn),過(guò)點(diǎn)P的弦恰好以P為中點(diǎn),那么這弦所在的直線方程(   )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案