【題目】已知以橢圓:的焦點和短軸端點為頂點的四邊形恰好是面積為4的正方形.
(1)求橢圓的方程;
(2)直線:與橢圓交于異于橢圓頂點的,兩點,為坐標原點,直線與橢圓的另一個交點為點,直線和直線的斜率之積為1,直線與軸交于點.若直線,的斜率分別為,,試判斷是否為定值,若是,求出該定值;若不是,說明理由.
科目:高中數學 來源: 題型:
【題目】唐三彩是中國古代陶瓷燒制工藝的珍品,它吸取了中國國畫、雕塑等工藝美術的特點,在中國文化中占有重要的歷史地位,在陶瓷史上留下了濃墨重彩的一筆.唐三彩的生產至今已有1300多年的歷史,制作工藝十分復雜,而且優(yōu)質品檢驗異常嚴格,檢驗方案是:先從燒制的這批唐三彩中任取 3件作檢驗,這3件唐三彩中優(yōu)質品的件數記為.如果,再從這批唐三彩中任取3件作檢驗,若都為優(yōu)質品,則這批唐三彩通過檢驗;如果,再從這批唐三彩中任取1件作檢驗,若為優(yōu)質品,則這批唐三彩通過檢驗;其他情況下,這批唐三彩都不能通過檢驗.假設這批唐三彩的優(yōu)質品概率為,即取出的每件唐三彩是優(yōu)質品的概率都為,且各件唐三彩是否為優(yōu)質品相互獨立.
(1)求這批唐三彩通過優(yōu)質品檢驗的概率;
(2)已知每件唐三彩的檢驗費用為100元,且抽取的每件唐三彩都需要檢驗,對這批唐三彩作質量檢驗所需的總費用記為元,求的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知拋物線:,過拋物線焦點且與軸垂直的直線與拋物線相交于、兩點,且的周長為.
(1)求拋物線的方程;
(2)若直線過焦點且與拋物線相交于、兩點,過點、分別作拋物線的切線、,切線與相交于點,求:的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,已知點,過點作直線、與圓:和拋物線:都相切.
(1)求拋物線的兩切線的方程;
(2)設拋物線的焦點為,過點的直線與拋物線相交于、兩點,與拋物線的準線交于點(其中點靠近點),且,求與的面積之比.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱錐中,為梯形,,,,,,.
(1)在線段上有一個動點,滿足且平面,求實數的值;
(2)已知與的交點為,若,且平面,求二面角平面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓的離心率為,分別是橢圓的左右焦點,點是橢圓上任意一點,且.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)在直線上是否存在點Q,使以為直徑的圓經過坐標原點O,若存在,求出線段的長的最小值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:上的點到右焦點F的最大距離為,離心率為.
求橢圓C的方程;
如圖,過點的動直線l交橢圓C于M,N兩點,直線l的斜率為,A為橢圓上的一點,直線OA的斜率為,且,B是線段OA延長線上一點,且過原點O作以B為圓心,以為半徑的圓B的切線,切點為令,求取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com