已知橢圓
的中心在坐標(biāo)原點,焦點在
軸上,離心率為
,橢圓
上的點到焦點距離的最大值為
.
(Ⅰ)求橢圓
的標(biāo)準方程;
(Ⅱ)若過點
的直線
與橢圓
交于不同的兩點
,且
,求實數(shù)
的取值范圍.
解:(Ⅰ)設(shè)所求的橢圓方程為:
由題意:
所求橢圓方程為:
. ……………………5分
(Ⅱ)若過點
的斜率不存在,則
.
若過點
的直線斜率為
,即:
時,
直線
的方程為
由
因為
和橢圓
交于不同兩點
所以
,
所以
①
設(shè)
由已知
,則
②
③
將③代入②得:
整理得:
所以
代入①式得
,解得
.
所以
或
.
綜上可得,實數(shù)
的取值范圍為:
.
……………………14分
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知
為坐標(biāo)原點,
為橢圓
在
軸正半軸上的焦點,過
且斜率為
的直線
與
交與
、
兩點,點
滿足
(Ⅰ)小題1:證明:點
在
上;
(Ⅱ)小題2:設(shè)點
關(guān)于點
的對稱點為
,證明:
、
、
、
四點在同一圓上。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
:
(
),其焦距為
,若
(
),則稱橢圓
為“黃金橢圓”.
(1)求證:在黃金橢圓
:
(
)中,
、
、
成等比數(shù)列.
(2)黃金橢圓
:
(
)的右焦點為
,
為橢圓
上的
任意一點.是否存在過點
、
的直線
,使
與
軸的交點
滿足
?若存在,求直線
的斜率
;若不存在,請說明理由.
(3)在黃金橢圓中有真命題:已知黃金橢圓
:
(
)的左、右焦點分別是
、
,以
、
、
、
為頂點的菱形
的內(nèi)切圓過焦點
、
.試寫出“黃金雙曲線”的定義;對于上述命題,在黃金雙曲線中寫出相關(guān)的真命題,并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知橢圓
+
=1(a>b>0)與雙曲線
-
=1有相同的焦點,則橢圓的離心率為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)p:方程
表示是焦點在y軸上的橢圓;q:三次函數(shù)
在
內(nèi)單調(diào)遞增,.求使“
”為真命題的實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
設(shè)
,橢圓方程為
,拋物線方程為
.如圖所示,過點
作
軸的平行線,與拋物線在第一象限的交點為
,已知拋物線在點
的切線經(jīng)過橢圓的右焦點
.
(1)求滿足條件的橢圓方程和拋物線方程;
(2)設(shè)
分別是橢圓長軸的左、右端點,試探究在拋物線上是否存在點
,使得
為直角三角形?若存在,請指出共有幾個這樣的點?并說明理由(不必具體求出這些點的坐標(biāo)).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分15分)
已知點
,過點
作拋物線
的切線
,切點
在第二象限,如圖.(Ⅰ)求切點
的縱坐標(biāo);
(Ⅱ)若離心率為
的橢圓
恰好經(jīng)過切點
,設(shè)切線
交橢圓的另一點為
,記切線
的斜率分別為
,若
,求橢圓方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知焦點在y軸的橢圓
的離心率為
,則m= ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
在
中,∠ABC=450,∠ACB=600,
繞BC旋轉(zhuǎn)一周,記以AB為母線的圓錐為M1
,記以AC為母線的圓錐為M2,m是圓錐M1任一母線,則圓錐M2的母線中與m垂直的直線有 ▲ 條
查看答案和解析>>