【題目】為了解某地參加2015 年夏令營(yíng)的名學(xué)生的身體健康情況,將學(xué)生編號(hào)為,采用系統(tǒng)抽樣的方法抽取一個(gè)容量為的樣本,且抽到的最小號(hào)碼為,已知這名學(xué)生分住在三個(gè)營(yíng)區(qū),從在第一營(yíng)區(qū),從在第二營(yíng)區(qū),從在第三營(yíng)區(qū),則第一、第二、第三營(yíng)區(qū)被抽中的人數(shù)分別為(

A. B.

C. D.

【答案】B

【解析】

試題分析:依題意可知,在隨機(jī)抽樣中,首次抽到005號(hào),以后每隔10個(gè)號(hào)抽到一個(gè)人,

抽取的號(hào)碼構(gòu)成以5為首項(xiàng),d=10為公差的等差數(shù)列.

an=10n-5.

由10n-5155解得n16,即第一營(yíng)區(qū)抽中的人數(shù)為16人.

由156<10n-5255,即n=17,18,26,共有26-17+1=10人,即第二營(yíng)區(qū)抽中的人數(shù)為10人.

則第三營(yíng)區(qū)的人數(shù)為40-16-10=14人

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為矩形,側(cè)棱底面,,的中點(diǎn).

)求直線所成角的余弦值;

)在側(cè)面內(nèi)找一點(diǎn),使,求N點(diǎn)的坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,點(diǎn)

)求 的方程;

)直線不過(guò)原點(diǎn)O且不平行于坐標(biāo)軸,有兩個(gè)交點(diǎn),線段的中點(diǎn)為,證明:的斜率與直線的斜率的乘積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日12月5日的每天晝夜溫度與實(shí)驗(yàn)每天每100顆種子中的發(fā)芽數(shù),得到如下數(shù)據(jù):

日期

12月1日

12月2日

12月3日

12月4日

12月5日

溫差

10

11

13

12

8

發(fā)芽數(shù)

23

25

30

26

16

農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn)

選取的2組數(shù)據(jù)恰好是不相鄰的2天數(shù)據(jù)的概率;

若選取的是12月112月5日的兩組數(shù)據(jù),請(qǐng)根據(jù)12月2日12月4日的數(shù)據(jù),求關(guān)線性回歸方程;

性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)所得的線性回歸方程是否可靠?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1求曲線在點(diǎn)處的切線方程;

2求函數(shù)的單調(diào)區(qū)間及極值;

3對(duì)成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市戶居民的月平均用電量(單位:度),以,,,,分組的頻率分布直方圖如圖.

(I)求直方圖中的值;

(II)求月平均用電量的眾數(shù)和中位數(shù);

(III)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列是首項(xiàng)為0的遞增數(shù)列,,滿足:對(duì)于任意的總有兩個(gè)不同的根,則的通項(xiàng)公式為_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列的前項(xiàng)和為已知

I)設(shè),證明數(shù)列是等比數(shù)列;

II)求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為方便市民休閑觀光,市政府計(jì)劃在半徑為200,圓心角為的扇形廣場(chǎng)內(nèi)(如圖所示),沿邊界修建觀光道路,其中分別在線段上,且兩點(diǎn)間距離為定長(zhǎng).

1)當(dāng)時(shí),求觀光道段的長(zhǎng)度;

2)為提高觀光效果,應(yīng)盡量增加觀光道路總長(zhǎng)度,試確定圖中兩點(diǎn)的位置,使觀光道路總長(zhǎng)度達(dá)到最長(zhǎng)?并求出總長(zhǎng)度的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案