【題目】過點(diǎn)作一直線與雙曲線相交于、兩點(diǎn),若中點(diǎn),則( )

A. B. C. D.

【答案】D

【解析】

設(shè)出直線AB的方程與雙曲線方程聯(lián)立消去y,設(shè)兩實(shí)根為,利用韋達(dá)定理可表示出的值,根據(jù)P點(diǎn)坐標(biāo)求得8進(jìn)而求得k,則直線AB的方程可得;利用弦長公式求得|AB|

解:易知直線AB不與y軸平行,設(shè)其方程為y2kx4

代入雙曲線C,整理得(12k2x2+8k2k1x32k2+32k100

設(shè)此方程兩實(shí)根為,,則

P42)為AB的中點(diǎn),

所以8

解得k1

當(dāng)k1時,直線與雙曲線相交,即上述二次方程的△>0

所求直線AB的方程為y2x4化成一般式為xy208,10

|AB|||4

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐中,的中點(diǎn),為正三角形,,,平面平面.

(1)求證:;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三棱柱中,的中點(diǎn),點(diǎn)在側(cè)棱上,平面.

(1)證明:的中點(diǎn);

(2)設(shè),四邊形為正方形,四邊形為矩形,且異面直線所成的角為30°,求兩面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是橢圓上的兩點(diǎn).

1)求橢圓的離心率;

2)已知直線過點(diǎn),且與橢圓交于另一點(diǎn)(不同于點(diǎn)),若以為直徑的圓經(jīng)過點(diǎn),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某超市開展年終大回饋,設(shè)計了兩種答題游戲方案:

方案一:顧客先回答一道多選題,從第二道開始都回答單選題;

方案二:顧客全部選擇單選題進(jìn)行回答;

其中每道單選題答對得2分,每道多選題答對得3分,無論單選題還是多選題答錯都得0分,每名參與的顧客至多答題3道.在答題過程中得到3分或3分以上立刻停止答題,并獲得超市回饋的贈品.

為了調(diào)查顧客對方案的選擇情況,研究人員調(diào)查了參與游戲的500名顧客,所得結(jié)果如下表所示:

男性

女性

選擇方案一

150

80

選擇方案二

150

120

(1)是否有95%的把握認(rèn)為方案的選擇與性別有關(guān)?

(2)小明回答每道單選題的正確率為0.8,多選題的正確率為0.75,.

①若小明選擇方案一,記小明的得分為,求的分布列及期望;

②如果你是小明,你覺得選擇哪種方案更有可能獲得贈品,請通過計算說明理由.

附:,

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以橢圓的中心O為圓心,以為半徑的圓稱為該橢圓的伴隨.已知橢圓的離心率為,且過點(diǎn)

1)求橢圓C及其伴隨的方程;

2)過點(diǎn)伴隨的切線l交橢圓CA,B兩點(diǎn),記為坐標(biāo)原點(diǎn))的面積為,將表示為m的函數(shù),并求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題:關(guān)于的不等式無解;命題:指數(shù)函數(shù)上的增函數(shù).

(1)若命題為真命題,求實(shí)數(shù)的取值范圍;

(2)若滿足為假命題且為真命題的實(shí)數(shù)取值范圍是集合,集合,且,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

)當(dāng)時,證明:有且只有一個零點(diǎn);

)求函數(shù)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】條形圖給出的是2017年全年及2018年全年全國居民人均可支配收入的平均數(shù)與中位數(shù),餅圖給出的是2018年全年全國居民人均消費(fèi)及其構(gòu)成,現(xiàn)有如下說法:

①2018年全年全國居民人均可支配收入的平均數(shù)的增長率低于2017年;

②2018年全年全國居民人均可支配收入的中位數(shù)約是平均數(shù)的;

③2018年全年全國居民衣(衣著)食(食品煙酒)。ň幼。┬校ń煌ㄍㄐ牛┑闹С龀^人均消費(fèi)的.

則上述說法中,正確的個數(shù)是( )

A. 3B. 2C. 1D. 0

查看答案和解析>>

同步練習(xí)冊答案