【題目】已知是橢圓上的兩點.

1)求橢圓的離心率;

2)已知直線過點,且與橢圓交于另一點(不同于點),若以為直徑的圓經(jīng)過點,求直線的方程.

【答案】(1)(2)

【解析】

1)將AB點的坐標(biāo)代入橢圓G的方程,列出方程組求出的值,再求出和離心率;
2)由(1)求出橢圓G的方程,對直線的斜率進(jìn)行討論,不妨設(shè)直線的方程,與橢圓G的方程聯(lián)立后,利用韋達(dá)定理寫出式子,將條件轉(zhuǎn)化為,由向量數(shù)量積的坐標(biāo)運算列出式子,代入化簡后求出的值,即得直線的方程.

解:(1)由已知

由點在橢圓上可得,

解得.

所以

所以橢圓的離心率是;

2)當(dāng)直線過點且斜率不存在時,可得點,不滿足條件;

設(shè)直線的方程為),點

可得,

顯然,此方程兩個根是點和點的橫坐標(biāo),

所以,即,

所以,

因為以為直徑的圓經(jīng)過點

所以,即

,

,

,,

當(dāng)時,即直線,與已知點不同于點矛盾,

所以

所以直線的方程為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年,某地認(rèn)真貫徹落實中央十九大精神和各項宏觀調(diào)控政策,經(jīng)濟(jì)運行平穩(wěn)增長,民生保障持續(xù)加強(qiáng),惠民富民成效顯著,城鎮(zhèn)居民收入穩(wěn)步增長,收入結(jié)構(gòu)穩(wěn)中趨優(yōu).據(jù)當(dāng)?shù)亟y(tǒng)計局公布的數(shù)據(jù),現(xiàn)將8月份至12月份當(dāng)?shù)氐娜司率杖朐鲩L率與人均月收入分別繪制成折線圖(如圖一)與不完整的條形統(tǒng)計圖(如圖二).請從圖中提取相關(guān)的信息:

①10月份人均月收入增長率為左右;

②11月份人均月收入為2047元;

③從上圖可知該地9月份至12月份人均月收入比8月份人均月收入均得到提高.

其中正確的信息個數(shù)為( )

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C1y=cos xC2y=sin (2x+),則下面結(jié)論正確的是( )

A. C1上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個單位長度,得到曲線C2

B. C1上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移個單位長度,得到曲線C2

C. C1上各點的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向右平移個單位長度,得到曲線C2

D. C1上各點的橫坐標(biāo)縮短到原來的倍,縱坐標(biāo)不變,再把得到的曲線向左平移個單位長度,得到曲線C2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè){an}是公比為 q的等比數(shù)列,且a1,a3,a2成等差數(shù)列.

)求q的值;

)設(shè){bn}是以2為首項,q為公差的等差數(shù)列,其前n項和為Sn,當(dāng)n≥2時,比較Snbn的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱錐中,是正三角形,面,,、分別是、的中點.

1)證明:;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點A(﹣1,0),B1,0),C01),直線yax+ba0)將ABC分割為面積相等的兩部分,則b的取值范圍是(  )

A.0,1B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過點作一直線與雙曲線相交于兩點,若中點,則( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線上一點到焦點的距離.

(1)求拋物線的方程;

(2)過點引圓的兩條切線,切線與拋物線的另一交點分別為,線段中點的橫坐標(biāo)記為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某保險公司對一個擁有20000人的企業(yè)推出一款意外險產(chǎn)品,每年每位職工只要交少量保費,發(fā)生意外后可一次性獲得若干賠償金,保險公司把企業(yè)的所有崗位共分為三類工種,從事這三類工種的人數(shù)分別為12000,6000,2000,由歷史數(shù)據(jù)統(tǒng)計出三類工種的賠付頻率如下表(并以此估計賠付概率):

已知三類工種職工每人每年保費分別為25元、25元、40元,出險后的賠償金額分別為100萬元、100萬元、50萬元,保險公司在開展此項業(yè)務(wù)過程中的固定支出為每年10萬元.

(1)求保險公司在該業(yè)務(wù)所或利潤的期望值;

(2)現(xiàn)有如下兩個方案供企業(yè)選擇:

方案1:企業(yè)不與保險公司合作,職工不交保險,出意外企業(yè)自行拿出與保險公司提供的等額賠償金賠償付給意外職工,企業(yè)開展這項工作的固定支出為每年12萬元;

方案2:企業(yè)與保險公司合作,企業(yè)負(fù)責(zé)職工保費的70%,職工個人負(fù)責(zé)保費的30%,出險后賠償金由保險公司賠付,企業(yè)無額外專項開支.

請根據(jù)企業(yè)成本差異給出選擇合適方案的建議.

查看答案和解析>>

同步練習(xí)冊答案