【題目】已知為實數(shù),用表示不超過的最大整數(shù),例如,,,對于函數(shù),若存在,,使得,則稱函數(shù)是“函數(shù)”.
(1)判斷函數(shù),是否是“函數(shù)”;
(2)設函數(shù)是定義在上的周期函數(shù),其最小正周期是,若不是“函數(shù)”,求的最小值;
(3)若函數(shù)是“函數(shù)”,求的取值范圍.
【答案】(1)是,不是;(2)1;(3),且,.
【解析】
(1)舉例說明函數(shù)是函數(shù),證明函數(shù)不是“函數(shù)”;
(2)假設,得到矛盾,再證明得證;
(3)對分三種情況討論得解.
(1)對于函數(shù)是函數(shù),設,
則,,
所以存在,,使得,所以函數(shù)是“函數(shù)”.
對于函數(shù),函數(shù)的最小正周期為,函數(shù)的圖象如圖所示,
不妨研究函數(shù)在[0,1]這個周期的圖象.
設,,則,
所以,
所以函數(shù)不是“函數(shù)”.
綜合得函數(shù)是“函數(shù)”,函數(shù)不是“函數(shù)”.
(2)的最小值為1.
因為是以為最小正周期的周期函數(shù),所以.
假設,則,所以,矛盾.
所以必有.
而函數(shù)的周期為1,且顯然不是函數(shù),
綜上所述,的最小值為1.
(3)當函數(shù)是“函數(shù)”時,
若,則顯然不是函數(shù),矛盾.
若,則,
所以在,上單調(diào)遞增,
此時不存在,使得,
同理不存在,使得,
又注意到,即不會出現(xiàn)的情形,
所以此時不是函數(shù).
當時,設,所以,
所以有,其中,
當時,
因為,所以,
所以,
當時,,
因為,所以,
所以,
綜上所述,,且,.
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)從某學校中選出名學生,統(tǒng)計了名學生一周的戶外運動時間(分鐘)總和,得到如圖所示的頻率分布直方圖和統(tǒng)計表格.
(1)寫出的值,并估計該學校人均每周的戶外運動時間(同一組數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)從該校學生中抽取5名學生,記5名學生中每周戶外運動時長在的人數(shù)為,求的分布列和數(shù)學期望;
(3)完成下列列聯(lián)表,并回答能否有90%的把握認為“每周至少運動130分鐘與性別有關”?
每周戶外運動時間不少于130分鐘 | 每周戶外運動時間少于130分鐘 | 合計 | |
男 | |||
女 | |||
合計 |
附:,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為坐標原點,拋物線上一點到焦點的距離為,若點為拋物線準線上的動點,給出以下命題:
①當為正三角形時,的值為;
②存在點,使得;
③若,則等于;
④的最小值為,則等于或.
其中正確的是( )
A.①③④B.②③C.①③D.②③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】拋物線的焦點為F,P為其上一動點,設直線l與拋物線C相交于A,B兩點,點下列結論正確的是( )
A.|PM| +|PF|的最小值為3
B.拋物線C上的動點到點的距離最小值為3
C.存在直線l,使得A,B兩點關于對稱
D.若過A、B的拋物線的兩條切線交準線于點T,則A、B兩點的縱坐標之和最小值為2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)學中的數(shù)形結合也可以組成世間萬物的絢麗畫面,一些優(yōu)美的曲線是數(shù)學形象美、對稱美、和諧美的產(chǎn)物,曲線為四葉玫瑰線,下列結論正確的有( )
(1)方程(),表示的曲線在第二和第四象限;
(2)曲線上任一點到坐標原點的距離都不超過2;
(3)曲線構成的四葉玫瑰線面積大于;
(4)曲線上有5個整點(橫、縱坐標均為整數(shù)的點);
A.(1)(2)B.(1)(2)(3)
C.(1)(2)(4)D.(1)(3)(4)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線,把上各點橫坐標伸長為原來的2倍,縱坐標不變,得到函數(shù)的圖象,關于有下述四個結論:
(1)函數(shù)在上是減函數(shù);
(2)當,且時,,則;
(3)函數(shù)(其中)的最小值為.
其中正確結論的個數(shù)為( ).
A.1B.2C.3D.0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形為菱形,且,取中點為.現(xiàn)將四邊形沿折起至,使得.
(Ⅰ)求證:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)若點滿足,當平面時,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了推進分級診療,實現(xiàn)“基層首診、雙向轉診、急慢分治、上下聯(lián)動”的診療模式,某地區(qū)自2016年起全面推行家庭醫(yī)生簽約服務.已知該地區(qū)居民約為2000萬,從1歲到101歲的居民年齡結構的頻率分布直方圖如圖1所示.為了解各年齡段居民簽約家庭醫(yī)生的情況,現(xiàn)調(diào)查了1000名年滿18周歲的居民,各年齡段被訪者簽約率如圖2所示.
(1)估計該地區(qū)年齡在71~80歲且已簽約家庭醫(yī)生的居民人數(shù);
(2)若以圖2中年齡在71~80歲居民簽約率作為此地區(qū)該年齡段每個居民簽約家庭醫(yī)生的概率,則從該地區(qū)年齡在71~80歲居民中隨機抽取兩人,求這兩人中恰有1人已簽約家庭醫(yī)生的概率;
(3)據(jù)統(tǒng)計,該地區(qū)被訪者的簽約率約為.為把該地區(qū)年滿18周歲居民的簽約率提高到以上,應著重提高圖2中哪個年齡段的簽約率?并結合數(shù)據(jù)對你的結論作出解釋.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】.對于n∈N*(n≥2),定義一個如下數(shù)陣:,其中對任意的1≤i≤n,1≤j≤n,當i能整除j時,aij=1;當i不能整除j時,aij=0.設.
(Ⅰ)當n=6時,試寫出數(shù)陣A66并計算;
(Ⅱ)若[x]表示不超過x的最大整數(shù),求證:;
(Ⅲ)若,,求證:g(n)﹣1<f(n)<g(n)+1.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com