【題目】如圖,空間幾何體中,是邊長為2的等邊三角形,,,,平面平面,且平面平面,為中點.
(1)證明:平面;
(2)求二面角平面角的余弦值.
【答案】(1)證明見解析(2)
【解析】
(1)分別取,的中點,,連接,,,,,要證明平面,只需證明面∥面即可.
(2)以點為原點,以為軸,以為軸,以為軸,建立空間直角坐標(biāo)系,
分別計算面的法向量,面的法向量可取,并判斷二面角為銳角,再利用計算即可.
(1)證明:分別取,的中點,,連接,,,,.
由平面平面,且交于,平面,有平面,
由平面平面,且交于,平面,有平面
,所以∥,又平面,平面,所以∥平面
,由,有,∥,又平面,平面
,所以∥平面,
由∥平面,∥平面,,所以平面∥平面,所以∥平面
(2)以點為原點,以為軸,以為軸,以為軸,建立如圖所示空間直角坐標(biāo)系
由面,所以面的法向量可取,
點,點,點,,,
設(shè)面的法向量,所以
,取,
二面角的平面角為,則為銳角.
所以
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為定義在上的偶函數(shù),當(dāng)時,.
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)有兩個零點:求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的一個焦點坐標(biāo)為.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點,過點的直線(與軸不重合)與橢圓交于兩點,直線與直線相交于點,試證明:直線與軸平行.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線C:()的焦點F在直線上,平行于x軸的兩條直線,分別交拋物線C于A,B兩點,交該拋物線的準(zhǔn)線于D,E兩點.
(1)求拋物線C的方程;
(2)若F在線段上,P是的中點,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線E:過點Q(1,2),F為其焦點,過F且不垂直于x軸的直線l交拋物線E于A,B兩點,動點P滿足△PAB的垂心為原點O.
(1)求拋物線E的方程;
(2)求證:動點P在定直線m上,并求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體中,是棱上動點,下列說法正確的是( ).
A.對任意動點,在平面內(nèi)存在與平面平行的直線
B.對任意動點,在平面內(nèi)存在與平面垂直的直線
C.當(dāng)點從運動到的過程中,與平面所成的角變大
D.當(dāng)點從運動到的過程中,點到平面的距離逐漸變小
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】臺球是一項國際上廣泛流行的高雅室內(nèi)體育運動,也叫桌球(中國粵港澳地區(qū)的叫法)、撞球(中國臺灣地區(qū)的叫法)控制撞球點、球的旋轉(zhuǎn)等控制母球走位是擊球的一項重要技術(shù),一次臺球技術(shù)表演節(jié)目中,在臺球桌上,畫出如圖正方形ABCD,在點E,F處各放一個目標(biāo)球,表演者先將母球放在點A處,通過擊打母球,使其依次撞擊點E,F處的目標(biāo)球,最后停在點C處,若AE=50cm.EF=40cm.FC=30cm,∠AEF=∠CFE=60°,則該正方形的邊長為( )
A.50cmB.40cmC.50cmD.20cm
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com